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ABSTRACT

The negative gradient method is extended to the stable analog
computer programming of a class of time varying trajectory problems

defined by O(xt) = O f(x,ut) = O, u = i where X and u are n-di-
mensional vdctofs, 4 is an m-dimensional position vector function
(m < n), and f is An (n - m) dimensional velocity vector function.

This class of problems includes the amplitude-stabilized oscillator,
two-dimenSional contour tracing (ref 1), conic section generation
and three-dimensional trajectory plotting when at least the first

integral of the equations of motion are available.

An augmented velocity vector function is defined

f :f + d
dt

which provides n independent equations f/ = 0. For a fixed x,

these equations can be solved for u in the computer reset mode. In
the compute mode u is connected to the integrator developing x. The
resulting system is analyzed and shown to be easily stabilized.

1. INTRODUCTION

1.1 Definition of the Problem

The problem will be defined in n-dimensional space. Vector/
matrix notation will be employed to reduce the labor of writing equa-

tions. The following definitions will be used:

(1) position vector x = [xl, x2, ... x n]

(2) i-th position function 0i a i(xt); i =1...m, m < n

(t is the-rndependent variable time)

(3) position function vector 4 E [$I' 2'

(4) velocity vector u E [ul, u2 .oUn]

(5) j-th velocity function f = f (u,x,t); j = m + 1, m + 2, .oo n

(6) velocity function vector f _ [fm+' f m+2;' ° ' fn]

(7) position error vector v [vi, v2 ,... vn]

(8) velocity error vector a [al, a2 ,o.. an]

(9) gradient vectorV
-n-

(10) gradient vector V = [ a ' -_ nl
u u 2 n'

(11) general matrix notation, A - (a..) and I unity matrix (6j)
1J ij

(12) diagonal gain matrix K B (ki 8 ) i,j = 1....n

(13) diagonal gain matrix G a (gi 6 j) ij = 1... n
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(14) scalar or inner product of two n-dimensional vectors (p,q):

(pq).m p 1q 1 + p2 q2 +... pnqn

(15) positive definite matrix a a real symmetric matrix all of
whose characteristic roots are positive

Using the above definitions the problem can be stated as fol-

lows: Given the set of independent equations

4(x,t) = 0 (i )

f(x,u,t) = 0 (1.2) (1)

dx
U = j m (1.3)dt-

program an analog computer to generate the unknowns x(t), u(t). (1.1)
represents m equations, (1.2) represents n-m equations and (1.3) rep-

resents n equations for a total of 2n equations in 2n unknowns xl,," :

, x , u , u2,... u .. The problem has been formulated in terms
ou andnx rather than i and x because of the distinction between the
computer variable, i, which by definition is the total input to the
x integrator and the problem variable u (i.e. the * required as a
solution to the mathematical problem.). A full statement of the
problem also requires that n-m of the position coordinates be speci-
fied as initial conditions. Before continuing with the analysis of
such a system, it may be helpful to expand upon the terse problem
statement by considering some examples and applications in two- and
three-dimensional space.

1.2 Examples and Applications

In this section vector notation is momentarily abandoned
in favor of more conventional x,yz notation. Also u will be elim-
inated from the equations by the substitution x = U.

Consider the three-dimensional system (2):

Ol(x,y,z) a x 2 + yl - C2 z2 = 0

+2 (xyz) + + .x + =: +h.= 0 (2)

f3 (*,kjX,yz) M i2 + k2 + j- s 2 = 0

(c, a, P Y, h, s are arbitrary constants)

The sinmutaneous solution of (2) is a conic section traced at constant
speed s'. In (2) the variable t does not appear explicitly in' or f.

Consider the two-dimensional system (3):
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4l(x,y,t) = x3 + y2 - r2 (t) = 0

f2 (i,,x,y,t) M 0 + - s2 (t) = 0

If r(t) is constant and s(t) is a linear ramp, (3) represents linear

frequency modulation without any amplitude modulation. If both r(t)
and s(t) are constant, (3) represents an oscillator with highly

stable amplitude and frequency characteristics. If r(t) is constant
dO

and s(t) =-%- (3) performs trigonometric resolution (ref 2). If
s(t) is a constant, (3) represents a complex modulation scheme obey-

ing the law (AM) x (FM) = constant. The modulating intelligence r(t)

can be received by either an AM or FM receiver and is redundant.

Consider the system (4):

4l(x,y,t) x1 + y2 - r2 (t) b 0 (4)

f + - r2(t) s2 (t) = 0

If in (4) both r(t) and s(t) vary independently, the system will rep-

resent a simultaneous AM and FM waveform with independent messages'
r(t) and s(t).

2. ANALYSIS

2.1 Partitioning the Problem

Consider first the situation in which the analog computer
is in the hold or reset mode. In this mode the correct stationary

values of x and u must be generated. Since + is not a function of u,
it is possible to generate x by programming the equations

+1(x) = 0, 02 (x) = o,... m(X) = 0 (5)

with n-m of the coordinates of x specified as initial conditions.

Thisof course, results in a system of m independent equations with
m unknowns. Since these equations, in general, are nonlinear, the
gradient method* of programming is required to guarantee stability.

Turning now to the generation of u, the condition f = 0
provides only n-m equations to be solved for n unknowns. To obtain
the m additional equations. an augmented velocityf unction vector (f')
must be defined.

* The gradient method is synonymous with least squares, steepest

descent, or transpose matrix method.
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In vector notation

f' + f (6)
dt

For the rigorous, interpretation of (6), the original definitions of
f and.4 must be expanded to n-dimensions, with.the first m components
of f. being identically zero, and the last n-m components of 4 bqing
identically zero. Written out:

[d4l d42  dlm .

Sdt' dt' dt fm+l' fm+2' ° f (7)

If in the first m coordinates of fl the substitution of u for x is
made, then

f' =0 (8)

represents a system of n equations in n unknowns u1 , . o
The system (8) can be programmed by the gradient methoi and requires
that x developed from (5) be inserted as a parameter. The conditions
obtained in reset or hold then will be

0
(9)

f= 0

(9) represents the partitioned system.

2.2 Closing the Switch

Refer now to figure 1, which is a simplified schematic il-
lustrating the connections for the i-th component of x and u. In
reset or hold, switch .S is open and u and x assume their correct
stationary values. It is reasonable to suppose that if S were closed,
the resulting system would produce a very close approximation to the
desired trajectory, provided the system maintains dynamic stability.
The resultiqg computer differential equation will now be derived.

In accordance with the gradient method,

let v = -grad (0,0) = -Vx(,4) (10)

a - gradu (f'",f') = -V (f',f') (11)u u

From figure 1 we have

x = OU +1W (12)

u = Ga -(13)
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(ax is the potentiometer setting, figure 1, and is the time scale
factor) Differentiating (12) with respect to time and substi-

tuting (13)

xW = 0Ga + K4 (14)

The system stability may be investigated by linearizing .the system
about some arbitrary operating point .and examining the effect of

small perturbations 6x and 6u. Operating on equations (12) and
(14) with the variational operator 6

d(6x)
dt _u + K6v (15)

d(6x) + K d(6v) (16)

dt- +  dt

It is now necessary to express 6v and 8a in terms. of 6x. Taking

variations of both sides of (10)

6v" n 2 m a 6x.

j=l k=l
+n 2 2  k x ) 6xj 

(17)

Since variations are taken starting from an assumed equilibrium
state 0 = 0 the second term on the right in (17) vanishes. The
matrix

A M(a 2 -
iim

is positive definite since it can be factored into the product of
a matrix by its transpose; (17) then becomes

6v = -A 6x (18)

Note that since 0 is not a function of u, only the variation with
respect to x had to be considered in (17). To .fi'd 6a, take varia-
tions of both sides of (11), noting now that both 6u and 6x will

contribute to 6a.

n / - fk nf '\
6ai = ( -2 .. i u- ) 6Uj

j=l k -l@U

+ n(2 k) 6xj (19)zu. 6 xj ax

J=1 k=l
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In (19) terms involving second partial derivatives are absent be-
cause of the assumption that the initial conditions = 0 and f' = 0
are satisfied.

Rewriting (19)

6a = -B 6u -H 6x (20)

where 
jna (b2 

a / f
k=l i

H = (h..j) Y2 k __

The matrix B is positive definite but the matrix H is not so re-
stricted. Substituting (18) and (20) in (16)

d2  d
dt (6x) + OaGB~u + OGH6x + K T (A6x) = 0 (21)

da dA d
d2(6x) + cB6u + GH6x + K 6 6x + KA -. (q x) = 0 (22)

dtW t dt

From (15) and (18)

d
O~5u = KA~x + (6x) (23)

Substituting (23) in (22)

d s d dA)
I d2 (6x) + (KA + GB) ( x) + (GBKA + caGH + K - 6x = 0 (24)

T7dt dt

(24) is the characteristic matrix differential equation of the sys-
tem. Note that (I) the unity matrix is positive definite and
(KA + GB) is positive definite, since it is the sum of two positive
definite matrices KA and GB. Now it car be-shown by an extension
of the argument of Bellma1 (ref 3) that (24) will be stable if'the

matrix sum
dA (5

GBKA + OGH + K d(25)

can be expressed as the sum of a positive definite matrix and a skew
symmetric matrix. The matrix product GBKA is positive definite and

dA
and the matrix K T is symmetric, Let H be expressed as the sum of

a symmetric part H and a skew symmetric part S
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H =r+ S (26)

Let the notation A > B for two symmetric matrices denote the fact
that A - B is positive definite. Then the condition for stability
can be written

dAGBKA + COH + K L > 0 (27)

dt

or

GBKA > - OGH - K (28)
dt

It is now evident that if the term aGH is causing instability, the
scale factor a must be decreased ioe., the trajectory is run slower
than the real time case (a = 1). If the term K dA is causing in-
stability K can be decreased. If only the full set of velocity
functions is given (f1, f2,oo, f ), then A m 0 and the condition
for stability becomes H,> 0. Tfis may be impossible to satisfy,
in which case at least one function 4K must be found by integration
from the system f = 0. Since at lea~t 4. is available, A is rein-
stated and system stability is obtained ai'before.

3. CONCLUSION

It has been shown that the powerful negative gradient technique
can be extended to successfully program trajectory problems as de-
fined in the introduction. Computer stabilization may require time
scaling.(decreasing a) or reducing the gain K.
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