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Foreword

HE tremendous research and development effort that went into the

development of radar and related techniques during World War II
resulted not only in hundreds of radar sets for military (and some for
possible peacetime) use but also in a great body of information and new
techniques in the electronics and high-frequency fields. Because this
basic material may be of great value to science and engineering, it seemed
most important to publish it as soon as security permitted.

The Radiation Laboratory of MIT, which operated under the super-
vision of the National Defense Research Committee, undertook the great
task of preparing these volumes. The work described herein, however, is
the collective result of work done at many laboratories, Army, Navy,
university, and industrial, both in this country and in England, Canada,
and other Dominions.

The Radiation Laboratory, once its proposals were approved and
finances provided by the Office of Scientific Research and Development,
chose Louis N. Ridenour as Editor-in-Chief to lead and direct the entire
project. An editorial staff was then selected of those best qualified for
this type of task. Finally the authors for the various volumes or chapters
or sections were chosen from among those experts who were intimately
familiar with the various fields, and who were able and willing to write
the summaries of them. This entire staff agreed to remain at work at
MIT for six months or more after the work of the Radiation Laboratory
was complete. These volumes stand as a monument to this group.

These volumes serve as a memorial to the unnamed hundreds and
thousands of other scientists, engineers, and others who actually carried
on the research, development, and engineering work the results of which
are herein described. There were so many involved in this work and they
worked so closely together even though often in widely separated labora-
tories that it is impossible to name or even to know those who contributed
to a particular idea or development. Only certain ones who wrote reports
or articles have even been mentioned. But to all those who contributed
in any way to this great cooperative development enterprise, both in this
country and in England, these volumes are dedicated.

L. A. DuBRIDGE.
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Preface

HE work on linkage computers described in this volume was carried
Tout under the pressure of war. War gives little opportunity for the
advancement of abstract knowledge; all efforts must be concentrated on
meeting immediate needs. In developing techniques for the design of
linkage computers, the author has therefore been forced to concentrate on
finding practical methods for the design of computers rather than on
developing a unified and systematic analysis of the subject. The war has
thus given to this work a special character that it might not otherwise have
had.

The impulse to the development of the methods presented in this
volume for the mathematical design of linkage computers grew out of a
collaboration of the author with his friend, Dr. Vladimir Vand. That col-
laboration was begun in France in 1940, and was brought to a premature
end by the progress of the war. Though these ideas and methods have
largely been developed by the author since that time, he wishes to
emphasize that credit for the initiation of the work is shared by Dr.
Vand. It must be mentioned also that the techniques described in this
book were for the most part developed before the author became asso-
ciated with the Radiation Laboratory.

The author wishes to express sincere gratitude to Dr. H. M. James, the
editor of this volume, who gave the book its present form, contributing
many examples and many improvements to the methods. (Secs.: 67,68,
6-15, 86.)

The book would never have been completed in such a short time with-
out the assistance of Miss Constance D. Boyd, who read the manuscripts,
and Miss Elizabeth J. Campbell, Mrs. Kathryn G. Fowler, Miss Virginia
Driscoll, and Miss Patrica J. Boland, who calculated the tables and drew
nomograms. The author also wishes to thank Dr. I. Maddaus, Jr., for
bibliographical research.

The publishers have agreed that ten years after the date on which
each volume in this series is issued, the copyright thereon shall be
relinquished, and the work shall become part of the public domain.

A. Svoropa.
Prana, CZECHOSLOVAKIA,
June, 1946.
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CHAPTER 1
INTRODUCTION

1.1. Types of Computing Mechanisms.—Computing mechanisms
may be divided into two distinct types: arithmetical computing machines,
familiar to the layman through their common use in business offices, and
continuously acting computing mechanisms and linkages that range in
complexity from simple cams and levers to enormously complex devices
for the direction of naval and antiaircraft gunfire.

The arithmetical computing machines accept inputs in numerical
form, usually on a keyboard, and with these numbers perform the simple
arithmetical operations of addition, subtraction, multiplication, and
division—usually by the iteration of addition and subtraction in counting
devices. The results are finally presented to the operator, again in numer-
ical form. In their simplest forms these machines have the virtue of
applicability in a wide variety of computations, including those requiring
very high accuracy. By elaboration of these devices, as by the introduc-
tion of punched-tape control, their possibilities for automatic operation
can be greatly increased. Characteristic of their operation, however, is
their production of numerical results by calculations in discrete steps,
involving delays which are always appreciable and may be very large
if the required calculation is of complex form.

Continuously acting computing mechanisms are less flexible and have
less potential accuracy, but their applicability to the instantaneous or to
the continuous solution of specific problems—even quite complex ones—
makes them of great practical importance. They may serve as mere
indicators of the solutions of a problem, and require further action by
human agency for the completion of their function (speedometer, slide
rule); or they may themselves produce a mechanical action functionally
related to other mechanical actions (mechanical governors, automatic
gunsight).

Continuously acting computers fall into two main classes: function
generators and differential-equation solvers. Function generators pro-
duce mechanical actions—usually displacements or shaft rotations—that
are definite functions of many independent variables, themselves intro-
duced into the mechanism as mechanical actions. Simple examples of
such mechanisms are gear differentials, two- and three-dimensional cams,
slide multipliers and dividers, linkage computers, and mechanized nomo-

grams. Computers of the second class generate solutions of some definite
1




2 INTRODUCTION [SEc. 1.2

differential or integrodifferential equation—often an equation that
involves functions continuously determined by variable external cir-
cumstances. Elementary devices of this type are the integrators, com-
ponent solvers, speedometers, and planimeters.

From these elementary devices one can build up complicated mecha-
nisms that perform elaborate calculations. We may mention their
application in gunsights, bombsights, automatic pilots (for airplanes,
submarines, ships, and torpedoes), compensators for gyroscopic com-
passes, tide predictors, and other robots of varied types.

The present volume will deal only with the problem of designing con-
tinuously acting computing mechanisms.

1.2. Survey of the Problem of Computer Design.—There is no set
rule or law for the guidance of a designer of complex mechanical com-
puters. He must weigh against each other many diverse factors in the
problem: the accuracy required; the cost, weight, volume, and shape of the
computer; its inertia and delay in action; the forces required to operate it;
its resistance to shock, wear, and changes in weather conditions. He must
consider how long it will take to design the computer, how easily it can
be built, how easily it can be operated by a crew, whether suitable sources
of power will be available, and so on. The complexity of the theoretical
and practical problems is so great that two designers working on a given
problem will never arrive at precisely the same solution.

For practical reasons, a designer should be asked to find a computer
that meets certain specified tolerances, rather than the best possible
computer for a given use. He should know what will be the maximum
tolerated error of the computer, the maximum cost, weight, and volume
occupied, the maximum number of operators in the crew, the maximum
number of servomechanisms allowed, and so on. Tolerances provide a
convenient means for controlling the development of the computer, and—
if established in a practical way—they permit some freedom of choice by
the designer.

Choice of Approach to the Design Problem.—The type of computer to be
built is sometimes indicated in the specifications. If not, the first task
of the designer is to decide whether the computer is to be mechanical,
electrical, optical, or a combination of these. At the same time that this
important decision is made, the designer must weigh in his mind the path
that his thinking will follow. There are two principal methods for design-
ing a computer: the constructive method and the analytic.

The constructive method makes use of a small-scale model of the real
system with which the computer is to deal. For example, a constructive
antiaircraft fire-control computer might determine the elements of the
lead triangle by maintaining within itself and measuring the elements of a
small model of this triangle.
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In using the analytic method, the designer concentrates on the analytie
relations between the variables involved. A relation between variables,
such as

z=:cy+§: q))

can be given mechanical expression in terms of displacements or shaft
rotations, without regard to the nature of the quantity represented by the
variables z, ¥, and 2. For example, one may possess two devices that
generate output displacements zy and x/y, respectively, given input dis-
placements x and y. Combining these with a third device for adding their
output displacements, one can then produce a computer that, given input
displacements = and y, generates a final output displacement z having
continuously the value specified by Eq. (1). The computer is then a
“mechanization” of Eq. (1), rather than a model of any special system
involving variables z, y, and 2z thus related.

Computers designed by analytic methods consist of units (‘“cells’’)
that mechanize fairly simple relations, so connected as to provide a
mechanization of a more complex equation or system of equations. For
any given problem a great variety of designs is possible. This variety
arises in part from the possible choice among mechanical cells mechaniz-
ing a given elementary relation, and in part from the variety of ways in
which the relation between a given set of variables can be given analytic
expression. Thus, each of the equations

z = g @+ 1), (2a)
c=2(v+)) (26)
2y = a(y? + 1), (2c)

[all equivalent to Eq. (1)] suggests a different method of connecting
mechanical cells into a complete computer. This flexibility in analytic
design methods makes it possible to arrive at designs that are in general
more satisfactory mechanically than those obtained by constructive
methods.

In the present volume we shall be concerned entirely with mechanical
computers designed by the analytic method.

Block Diagram of the Computer.—To each formulation of the problem
in analytic terms there corresponds a block diagram of the computer.
In this diagram each analytic relation between variables is represented
by a square or similar symbol, from which emerge lines representing the
variables involved; a line representing a variable common to two relations
will connect the corresponding squares in the diagram. In mechanical
terms, each square then represents an elementary computer that estab-
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lishes a specified relation between the variables, and the connecting lines
represent the necessary connections between these elementary com-
puters. By examination of block diagrams the designer will be able to
gee the principal virtues of each computing scheme: the complexity of the
system, the working range of variables, the accuracy required of individual
components, and so on. On this basis he can make at least a tentative
selection of the block diagram to be used.

Selection of Components for the Computer.—Knowing the accuracy and
mechanical properties required of each computing element, the designer
can select the elementary computers from which the complete device is to
be built.

As an example of the diverse factors to be borne in mind, let us suppose
that it is required to provide a mechanical motion proportional to the
product of two variables, X, and X;. A slide multiplier of average size
will allow an error of from 0.1 per cent to 0.5 per cent of the whole range
of the variable; this error will depend on the quality of the construction
—on the backlash and the elasticity of the system. A linkage multiplier
will have an error of some 0.3 per cent due to its structure, practically no
error from backlash, and a slight error due to elasticity of the system if the
unit is well designed; the space required by a linkage multiplier is small,
but its error cannot be reduced by increasing its size. If these devices do
not promise sufficient accuracy, the designer must use multipliers based
on other principles. It is possible to perform multiplication by use of
two of the precision squaring devices illustrated in Fig. 1-23, by connect-
ing these in the way suggested by the equation

X1X2 = ]1:(X1 -+ X2)2 - 'i'(Xl - Xz)z- (3)

The error of such a multiplier may be as low as 0.01 per cent, but the
system has an appreciable inertia. About the same accuracy is attain-
able by a multiplier based on the differential formula for multiplication,

d(X1Xz) = deXz+X2dX1; (4)

this employs two integrators, and is commonly used when two quantities
are to be multiplied in a differential analyzer. This scheme is useful only
when it is possible to allow a slow change in a constant added to the
product X;X,—a change which will result from slippage in the integra-
tors, negligible for a single multiplication but accumulating with repetition
of the operation.

From this discussion it should be evident that there is no ‘“best”
multiplier. Similarly, other components of a computer must be selected
with due regard for their special characteristics and the demands to be
made upon them.

Mathematical Design of the System.—From the block diagram one
should proceed to the mechanical design of a system through an inter-
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mediate step—that of establishing the ‘‘mathematical design” of the
system. The mathematical design ignores the dimensions not essential
to the nature of the computation to be carried out—diameters of shafts,
dimensions of ball bearings, dimensions of the frame—but specifies the
dimensions of levers measured between pivots and joints, the size of frie-
tion wheels, tentative gear diameters and gear ratios. The properties of
this design should be studied carefully, because this usually leads to a
change in some detail of the design, and sometimes even to choice of a new
block diagram.

Final Steps in the Design.—From the mathematical design of the
system one can proceed to the design of a working model. The elements
of this model should be accessible rather than massed together, inexpen-
sive, and quick to manufacture. If the performance of the working model
is found to be satisfactory, the first model can be designed. Here the
ingenuity of the designer must be used to the maximum. The parts of
the mechanism must be arranged compactly to decrease space require-
ments, weight, and the effects of elasticity and thermal expansion, but
they should not be massed in such a way that assembly is difficult, or
repair or servicing impossible. Sometimes division of the whole ecomputer
into several independent parts is advisable. Finally, the computer can be
built and tested against specifications.

1.3. Organization of the Present Volume.—It is not possible to dis-
cuss in one volume all elements of the problem of computer design. This
book will deal principally with bar-linkage computers—specifically, with
the mathematical design of elements for such computers. Bar linkages
are mechanically very satisfactory, and computers built from them have
many important virtues, but the mathematical design of these systems
is relatively difficult and is not widely understood. There are few stand-
ard bar-linkage elements for computers; it is usually necessary to design
the components of the computer, and not merely to organize standard
elements into a complex assembly. It is hoped that the design methods
to be described here will lead to their more general use.

Bar linkages can be used in combination with the standard computing
mechanisms. For this reason, and for the contrast with the bar lLink-
ages which are to be discussed later, this volume begins with a brief survey
of some more or less standard elements of mechanical computers. Chap-
ter 2 is devoted to a general discussion of bar linkages. Chapter 3
establishes terminology and describes graphical procedures of which
extensive use will be made. Chapters 4, 5, and 6 discuss, in order of their
increasing complexity, bar linkages with one degree of freedom—gener-
ators of functions of one independent variable. Chapter 7 indicates some
mathematical methods of importance in bar-linkage design. Finally,
Chaps. 8, 9, and 10 develop methods for the design of bar-linkage gener-




6 INTRODUCTION [SEC. 1-4

ators of functions of two independent variables—a field in which bar
linkages have very striking advantages.

ELEMENTARY COMPUTING MECHANISMS

The remainder of this chapter will give a brief survey of elementary
computing mechanisms, or ‘cells,” of more or less standard type. Dis-
cussion of bar-linkage cells will be deferred to Chap. 2.

1.4. Additive Cells.—‘“ Additive” or ‘“‘linear’ cells establish linear
relations between mechanical motions of the cell, usually shaft rotations
or slide displacements. If these are described by parameters X, X,, X3,
the cell will compute

X3=Q'X1+Q/'X2+C. (5)

Here @, @', and C are constants depending on the design of the cell and the
choice of the zero positions from which X, X, and X; are measured. By

® X,

X

S,

Fic. 1:1.—Bevel-gear differential.

proper choice of the zero positions, C can always be made to vanish; in
what follows it will be assumed that this has been done.

The bevel-gear differential (Fig. 1-1) is a well-known linear cell for
which all three parameters are rotations. The parameter X, is the rota-
tion of the shaft S, from a predetermined zero position, X; = 0; the posi-
tive direction of rotation is indicated by symbols representing the head
and tail of an arrow with this direction. The parameter X, is the rotation
of the shaft S; from a similar zero position; X3 is the rotation from its zero
position of the cage C carrying the planetary bevel gears G. The zcro
positions are not indicated in the figure.

The equation of the bevel-gear differential is

To derive this it is convenient to consider the value of X, corresponding to
given values of X; and X;. Let us consider the differential to be originally
in the position X; = X, = X3 = 0. The parameters X; and X; can then
be given their assigned values in two steps, the first a rotation of both the
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shaft S, and the cage C through the angle X3, and the second a rotation of
the shaft S, through an additional angle X; — X3 In the first step the
differential moves as a unit; the shaft S, is rotated through the angle Xj.
In the second step, the cage is stationary and the movement of the shaft
Sy is transmitted to the shaft S, with its sense of rotation reversed; the
rotation through angle X; — X; of the shaft S, causes rotation through
Xs — X, of the shaft S,. The total rotation of the shaft S; is then
X, = X3+ (X5 — X,1), from which Eq. (2) follows immediately. It is,
of course, essential that all rotations be taken as positive in the same
sense.

It is remarkable that Eq. (6) is independent of the ratio of the bevel
gearing of the differential; the essential characteristic of this type of

Fia. 1-2.—~Cylindrical-gear differential.

differential is that the gearing of the cage transmits the relative motion of
the shaft S; to the shaft S, in the ratio 1 to 1, but with reversed sense. It
is not necessary to use bevel gears in the cage to obtain this result;
cylindrical gears can accomplish the same purpose. A cylindrical-gear
differential is shown in Fig. 1-2. This differential is equivalent to the
common bevel-gear differential, except in its mechanical features. It is
flatter, and easier to construct in large numbers, but there is one more
gear mesh than in the common type; there may be more backlash and
more friction. It should be noted, however, that bevel gears are subject
to axial as well as radial forces in their bearings, and that these may also
increase friction.

The spur-gear differential shown in Fig. 1-3 has only two gear meshes,
and is quite flat. The planetary gears G in their cage C do not invert the
motion of the shaft S; when transmitting it to the shaft Ss, but can be
made to transmit it at a ratio different from 1, The equation of this
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differential is
X; =QX, 4+ (1 — @X. (7)

To prove this relation we can use the same method as before. Let us
begin by considering the differential in the zero position,

X1=X2=X3=0.

We wish to find the value of X; corresponding to given X, and X,. We
introduce the angles X, and X in two steps, first turning both the shaft
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Fic. 1-3.—Spur-gear differential.
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Fia. 1-4.—Differential with axially displaced spiral gear.

8; and the cage C through the angle X,, and then the shaft S, through an
additional X; — X.. In the first step the differential is turned as a rigid
body; the shaft S, is also turned through the angle X;. In the second
step the shaft Ss is turned through Q(X; — X.); its total motion is
Xs = X: + Q(X, — X,), in agreement with Eq. (7).

If we make @ = Q' = 0.5 by proper choice of the gear ratios, we can
obtain a differential equivalent to the bevel-gear differential. The fact
that the free choice of Q gives to this differential a larger field of applica-
bility does not necessarily mean that this differential should be preferred
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to those with @ = 0.5; it is convenient to use differentials with @ = 0.5
as prefabricated standard elements.

A differential with axially displaced spiral gear is shown in Fig. 1-4.
The parameter X, which measures the axial displacement of the spiral
gear and the pin Py, is variable only within finite limits. The mechanical
structure of this differential is, however, much simpler than that of the
differentials already mentioned, for which all parameters can change with-
out limitation. The equation of this differential is

X3=X1+—2—:rn—nX2, ®

where 7 is the number of threads per inch along the axis of the spiral gear
on the shaft S, and m is the number of teeth on the gear with which it
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Fia. 1.5.—Differential worm gearing.

meshes. The helical angle of the gears should be at least 45° for smooth
action and small backlash.

The differential worm gearing shown in Fig. 1-5 is used for the same
purpose as the preceding differential, especially if the range of values of
X, corresponds to a large fraction of a revolution of the shaft S, or even
to several revolutions of this shaft. The equation of this @ “erential is

Xo= £ 2 X, + % X,  (radians) )
where ¢ is the number of teeth of the worm gear, m is the multiplicity of
the threads of the worm, and R is the radius of the worm gear.

The sign in Eqgs. (8) and (9) depends on the sense of the threads of the
spiral or worm gear.

The screw differential shown in Fig. 1-6 combines an axial translation
X1 of a screw with a translation X, of the nut N with respect to the screw;

X; = X1 + Xe. (10)
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To obtain the first translation, the pin P on which the serew turns is
displaced by X;. The rotation of the screw comes from the gear G, which
meshes with a cylindrical rack C and slides along it. The real input

X3

X,

Fﬂlz
o
24

;
N

F16. 1-6.—Screw differential.

parameter of the differential is not X, but the angle X, through which the
rack is turned. The equation of the differential is then

X3 = X1 ‘_*_‘ ]{'X4 (11)

The sign depends on the sense of the screw; k is a constant determined by
the gear ratio, the number of threads per inch on the screw, and their
multiplicity. All three parameters of this
differential have constructive limits.

The belt differential (Fig. 1-7) makes
use of the inextensibility of a belting on
several pulleys. In practice, chains,
strings, and special cables are used as belts.
The equation of the belt differential is

X:=C — 05X, — 0.5X,, (12)

where C is a constant depending on the
choice of zero points of the parameters.

The tension in the belt must not fall
below zero at any time; if it does, the belt
will sag and the equation of the differential
will not hold. To obtain positive action in the direction of increasing X3,
it is necessary to preload the belt by putting a load on the output pulley—
ior instance, by a spring that can exert a force large enough to produce the
desired action. The maximum driving force required for this differ-
ential will then be about twice the force necessary to operate it without
preloading.

The loop-belt differential (Fig. 1-8) has the belting in the form of a loop
with length independent of the position of the pulleys. The belt can then

Fia. 1.7—Belt differential.
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be preloaded (turnbuckle B) without adding to the driving force of the
differential, except by the increased friction in the bearings.

Belt differentials are some-
times used to add a large number
of parameters; they are easily
combined in batteries, as indicated
schematically in Fig. 1-9. Insuch
an arrangement the parameter X,
may have so large a range that it
is impractical to use a slide as the
output terminal. It is better
practice to use a drum (dashed

Fi1a. 1-8.—Loop-belt differential.

line in Fig. 1-9) on which the belt is wound on . and at the same time
wound off. To prevent slippage, the belt should make many turns on the
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Fre. 1.9.—Loop-belt differential for
the evaluation of

X:=C — X1 —2X: +2X; — 2X4
+ 2X;5; — 2Xs.

drum and be fastened to it; a chain
on chain sprockets may also be used
as the belt.

The above enumeration does not
exhaust the possibilities for linear
mechanical cells; there are many
variants the use of which may be
dictated by special circumstances.

As a rule, when a differential is
used in a computing mechanism, two
of its members (the input terminals)
are moved by external forces; this
results in movement of a third mem-
ber (the output terminal) which is in
turn required to furnish an appreci-
able force. If differentials were fric-
tionless, any two of their three
terminals could be used as input
terminals. In reality, only a few of
the differentials described here have
complete interchangeability of the
terminals. For instance, with the
screw differential (Fig. 1-6) it is im-
possible to have X, as the output

parameter if the helical angle of the screw is so low that self-locking of the
nut on the screw occurs; it is possible to use X, as an output parameter,
and, of course, also X;. With the differential worm gearing of Fig. 15,
X, is an impracticable output parameter.
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1.6. Multipliers.—Multipliers are computers that establish between
three parameters a relation

EX; = X1 X,, (13)

where R is a constant that depends on the type of multiplier and on its
dimensions.

The action of the slide multiplier shown in Fig. 1-10 is based on the
proportionality of the sides of two similar triangles. These are triangles
with horizontal bases, and vertices at the central pin shown in the figure:

g P "1
ma [~
!\+ H
. TP
— ?:S@: '\I\:"/‘——/‘r" X,
% TS S =
- == == -

' R
A .

>

N IS G
Fia. 1-10.—Slide multiplier.

the first has a base of length R and altitude X, the second a base of length
X, and altitude X;. Thus

R _X,
-X—l = -X—:{’ (14(1)
or
RX; = X:X,. (14b)

The figure gives a schematic rather than a practical design; the lengths of
the sliding surfaces as shown are not great enough to prevent self-locking
in all possible positions of the mechanism. These lengths determine the
space requirements for multipliers of this type; they must be relatively
large in two directions. It is difficult to make this type of multiplier
precise. The pins in slots, as shown in the figure, are mechanically
inadequate, and roller slides on rails must be used. One can not achieve
the same end by increasing the dimensions of the multiplier because the

T TR

3
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elasticity of parts comes into play, not only when the parts are operating
in a computer, but also when they are being machined.

The slide multiplier shown in Fig. 1-11 saves space in one direction.
There are fewer sliding contacts, and the slides are easier to construct.

RX3=Xy'X,
b—

X3
3
i

X,
R

XX,

0]10]

F16. 1-11.—8lide multiplier with inputs X1, X; — Xa.

xnea? xz=a
L

a!
4!; i -%am1
1 ~8.=ﬂ'l
ot / =2
P
W %/
\\\ 1/
N ﬁ/
@2 - H + %gi’u‘zqu 1l & a2
7, 8 ~ i
ssim
/i A\
fi \
-1 Xy =2
-l ) 8‘--¢-l
o — %a=-1

F1a. 1-12.—Intersection nomogram for multiplication z; = z; » zx.

This device cannot multiply X; and X, directly to compute RX; = XX.;
the input terminals must be given translations of X; and X, — X,. The
difference is easy to obtain if the parameters are generated as shaft
revolutions before entering the multiplier; serews can then be used instead
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of the slides shown in the figure, and the required difference can be formed
by a gear differential.

Nomographic Multipliers.—A multiplier that is structurally related to
a nomogram for multiplication will be called a “nomographic multiplier.”

Such multipliers can be derived from intersection or alignment nomograms;
the examples to be given here are related to intersection nomograms.
il
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F1a. 1-13.—An intersection nomogram for multiplication, obtained from the nomogram in
Fig. 1-12 by a projective tranaformation.
Figure 1-12 shows an intersection nomogram for multiplication in an
unusual form, the full significance of which will be made clear in the latter
part of this book. This represents the formula

Ty = XjTk. (15)

It consists of three families of lines, of constant x;, z;, and zi, respectively;
through each point of the nomogram passes a line of each family, cor-
responding to values of 2y, r;, and x; which satisfy Eq. (15). (The lines
in this particular figure are drawn for values of the z’s that are powers of
1.25; this is not of immediate importance for our discussion.) The multi-
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plier of Fig. 1-10 is structurally related to this nomogram. -The rotating
slide can be brought to positions corresponding to the radial lines in the
nomogram; the horizontal and vertical slots correspond structurally to
the horizontal and vertical lines on the nomogram, and the pin that con-
nects all slides mechanically assures a triple intersection of these lines.
The values of z;, z;, and z; corresponding to the positions of the three
slides must then satisfy Eq. (15); to complete the multiplier it is only
necessary to provide scales from which these values can be read, or, as is
done in Fig. 1-10, to provide mechanical connections such that terminal
displacements are proportional to these quantities.

By a projective transformation of the nomogram in Fig. 1-12 one can
obtain the nomogram in Fig. 1-13, where lines of constant values of the
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Fia. 1-14.—Nomographic multiplier.

variables z;, z;, and z; form three families of radial lines intersecting in
three centers. The obvious mechanical analogue of this nomogram for
multiplication is shown in Fig. 1-14. Tt consists of three slides that rotate
about centers corresponding to the centers of the radial lines in Fig. 1-13;
these slides are bound together by a pin, which establishes the triple
intersections found in the nomogram, and the corresponding values of
x;, 2, and z, are read on circular scales. It will be noted that the scale
divisions are not uniform. Such nonuniform scales are of more general
use than one might expect. Often one will have to deal with variables
generated with nonuniform scales by some other computer; by proper
choice of the projective transformation one can then hope to produce a
multiplier of this type with similarly deformed scales.

1.6. Resolvers.—The resolver is a special type of multiplier. It
generates a parameter X3, and usually also another parameter X4, as a
product of a parameter X; and a trigonometric function—the sine or
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cosine—of a parameter X.. The equations are

X3 = X, sin Xz, (16a)
X4 = X, cos Xz. (16b)

The name of this device is derived from its action as a resolver of a vector
displacement into its rectangular components.

A simplified design of a resolver is shown in Fig. 1-15. In the plan
view, Fig. 1-15a, we see the materialization of a vector by a screw: the
axis of the screw points in the direction of the vector, at an angle X, to a
zero line; the length X, of the vector is established as the distance from
the pivot O on which the whole screw is rotated to a pin T on the nut of
the screw.

To obtain the components of the vector, slides are sometimes used,
as in the case of the multiplier in Fig. 1-10. In Fig. 1-15 there is sug-
gested a solution that gives much better precision and saves space.
Perpendicular shafts pass through the block B that carries the pin P.
These shafts are carried by rollers on rails; their parallelism to given
lines is well assured by gears that mesh with racks fastened to the frame.
For convenience of construction the axes of the shafts do not intersect
with each other and with the axis of the pin 7. This introduces a con-
stant term e into the displacement of the shafts—that is, it causes a dis-
placement ¢ in the effective zero positions of X;and X,.

It is of interest to note how the parameter X, is controlled from the
input shaft S; (Fig. 1-15b.). While the screw is rotated through the
angle X, on the shaft Ss, it is necessary to control the value of X, by a
gear G that rotates freely on this shaft. If such a gear is turned through
an angle proportional to X;—is held fixed when X, is constant—the
screw will spin on its axis whenever X, is changed ; the length of the vector
will be affected by change in X,, and will not represent the desired value of
X,. Ttis thus necessary to keep the screw without spin with respect to S,
when only X, is changed—to keep the gear @ moving along with the shaft
S: whenever X, is fixed. This is accomplished by the so-called ‘com-
pensating differential,”” D. As is shown in the figure, the planetary gear
of this bevel-gear differential is geared to the shaft S in the ratio 1 to 1;
the differential thus receives an input —X,;. When the input shaft S; is
rotated through X, the output shaft S; is rotated through an angle

X5 = —Xe - 2X2 (17)

By gearing the gear G to the shaft S in the ratio 2 to 1, the angle turned
by @ can be made to be

Xo = '—0.5X5 = 05X3 + Xz.

Then if S¢is stationary, Xe changes equally with X,, and the serew is not
spun; X, remains constant. If the shaft S; is turned, the gear G turns
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with respect to the shaft S; through an equal angle. The change in
X1 is then proportional to the rotation of the shaft S;:Xs = QX;, the
constant ¢ depending on gear ratios and the threading of the screw.
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Fia. 1-15.—Resolver. (a) Plan view. (b) Elevation. The teeth of the racks are omitted
. from the figures.

The design in Fig. 1-15 is so oversimplified that the resolver is sure to

be lacking in precision. In particular, the flexibility of the structure sup-

porting the screw is excessive: shaft .S, is easily bent and easily twisted.
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This can be remedied by placing the screw subassembly on a circular plate
with a large ball bearing on its circumference, and using a driving shaft of
reasonable diameter.

A better construction (but one that is not always usable) is presented
in Fig. 1-16. In the plan view, Fig. 1-16a, we observe the main difference
between the subassembly of the screw in Fig. 1-15 and the present design.
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Fia. 1-16.—Alternative resolver design. (a) Plan view. (b) Elevation.

In Fig. 1-16a the pin T is carried on an arm of radius R that rotates on a
pivot P. This pivot is placed at a distance R from the center S of the
circular plate H to which it is fastened. By rotating the arm PT', the
vector ST can be changed in length. Its direction would be changed at
the same time if it were not for a compensating rotation of the plate H.
Since the triangle SPT is isosceles the angle of rotation of ST to be com-
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pensated for is exactly half of the angle of rotation of the arm PT. To
introduce this compensation a differential is used; to change the direction
of the vector ST in a desired manner, the table H is rotated through a
second differential. The two differentials, D; and D,, are shown in Fig.
1-16b. Their function may be understood in this way. To change the
direction of the vector ST we must rotate the whole subassembly of the
plate H as a unit; we must turn the gears G; and G, by the same amounts.
These gears are geared to the cages of the planetary gears of the differen-
tials Dy, Ds, at the same ratio (1 to 1 in the figure); these also must be
turned equally. That is accomplished by turning the shaft S, and by
keeping the shaft S, stationary. To change the length of the vector ST
without turning it we have to turn the arm clockwise, for example, in the
plan view, and the plate H counterclockwise by half the amount. Thisis
accomplished by turning the shaft S;. This shaft is geared to the input
of the differential D, at the ratio 1 to 1 and to the input of the differential
D, at the ratio 3 to 1; when the shaft S, rotates, the gear G, turns three
times faster than the gear G2. To see that this gives a compensating
rotation of the plate through an angle —X when the arm PT rotates
through 2X relative to the plate H, we observe that if the gear G, were
fixed, a rotation of G, and the plate H through — X would rotate the arm
with respect to the plate also by —X. To bring it to the correct posi-
tion, 42X, it must then be rotated through an angle of +3X with respect
to the plate. To accomplish this the gear G; must be rotated through an
angle —3X, since the direction of rotation is reversed in the gear G.
Thus G: must turn in the same direction as G», but three times as fast.

1.7. Cams.—A cam is a mechanism that establishes a functional rela-
tion between parameters X; and X,:

X, = F(X,). (18)

If X, is the input parameter, X, the output parameter, it is necessary in
practice that F(X,;) be a single-valued, continuous function with deriva-
tives which do not exceed certain limits.

Plane cams exist in two principal variants, shown in Figs. 1-17 and
1-18. In the first the cam has the form of a disk shaped along a general
curve. Contact with this cam is made by a roller on an arm; the contact
is assured by tension of a spring. A cam of this type is easy to build
and has negligible backlash, but the force on.the arm is rather small in
one of the two senses of motion—not larger than the force of the spring.
In the second variant there is a slot milled into a flat surface rotating
on a pivot; contact is made by a roller carried on a slide, as shown in
Fig. 1-18. The second form does not permit use of as steep a spiral a3
does the first, since self-locking is more likely to occur.
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The cylindrical cam shown in Fig. 1-19 has a slot milled into the surface
of a cylinder; a small roller carried by a slide passes along the slot when
the cam is turned on its axis through the input angle X;. The form of the
slot is so chosen that the motion of the slide, described by the output
parameter X, has the desired character.

x, X2
/
Fig. 1-17.—Plane cam with spring Fia. 1-18.—Plane cam with groove
contact. contact.

One variant of pin gearing, as shown in Fig. 1-20, has a gear with a
special type of tooth meshing with a milled curved rack. (The milling
tool has a cutting shape identical with the shape of the teeth of the gear.)
Another form of pin gear (Fig. 1-21) has pins of special shape insertedin
a plate; these mesh with a specially formed gear. In both variants the
gear is keyed on a shaft, with freedom for lateral motion; this motion
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Fia. 1-19.—Cylindrical cam with groove Fig. 1-20.—Pin gearing with pins on gear,
contact.

of the gear is assured by the action of the curved rack on the pins on the
gear, or by a special cam constructed for this purpose.

The belt cam shown in Fig. 1-22 is a noncircular pulley or drum on
which is wound a belt, or string, or some other kind of belting. If the
number of revolutions of such a cam is to be greater than one, the string is
wound in a spiral; the shape of this spiral should assure a smooth tan-
gential winding of the string on the cams. Cams of this type can allow
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very large travels of the belt and shaft, but they are mechanically less
desirable than pin gears. They are not so safe in operation, and rather

F1g6. 1-21.—Pin-gearing with pins on the disk.

delicate, especially in the compensated form in which equal lengths of
string are simultaneously wound off and wound on.

An example of a compensated belt cam is the squaring cam shown in
Fig. 1-23. In this, two strings are wound partly on a cylinder, partly on a
cone. The winding on the cone is in X
the form of a spiral with equally 2
spaced threads; the form of the wind- _[,’ X
o, . N
ing is assured by a groove. One string = == Y
begins on the left side of the drum
and, after a number of turns, passes
on to the cone and continues in the
groove to the tapered right end of the X,
cone. The second string begins on =
the right side of the cylinder and after e s
several turns to the left passes also —] 1
onto the cone, where it continues Nual
through the groove to the left, to end
at the larger end of the cone. The
element of rotation dX; of the cone
produces a motion of the string equal
to RidX, where R, is the average Fra. 1-22.—Belt cam.
radius of the cone at the points where the string meets and leaves the cone.
The corresponding rotation of the drum is therefore dX3 = (—R.dX1)/R;,
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where R, is the radius of the drum. The radius R, is proportional to the
angle X measured from a properly chosen zero position of the shaft S;.
(This zero position 1s, of course, not practically attainable, since it would
correspond to zero radius of the cone at the point of contact.) We have
then

—dX, = "XédX‘, (19a)
2
- k 2
X, = — g5 X} (190)

if the zero point for X, is properly chosen. Here £ is the increment of the
radius R, per radian rotation of the shaft S;.

F1g. 1-23.—Compensated squaring cam,

This squaring cam does not by itself operate down to X; = 0. It can,
however, be used in a range including zero if it is combined with a differ-
ential. With

X1 = X3 + C, (20)
Eq. (19) becomes
X, = KX} + 2KCX; + K(C2 (21)
Introducing the new parameter
Xi= X, — 2KCX, + KC?, (22)
we have
X, = KX}, (23)

this holds even if X is zero or negative. The larger the negative values
of X3 to be reached the larger must be the positive constant C. The
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precision of a cam of this type can be made very high; the error may be less
than 0.02 per cent of the total travel of the output shaft S;. The rela-
tively great inertia and bulk of the device (especially when it is combined
with a differential for squaring negative numbers), limits its use to cases
where precision is essential.

Three-dimensional cams or ‘“‘camoids,” such as that shown in Fig.
1-24, are bodies of general form with two degrees of freedom—for instance,
a translation of X and a rotation X,—in contact with another body with
one degree of freedom, for instance, a translation X;. The parameter X;
will then be a function of two independent parameters, X, and X,:

X; = F(X,y, Xo). (24)

The body in contact is called the “follower’’; it may be a ball on a slide,
as shown in the figure, or an arm
rotating on a pin parallel to the main
axis of the camoid and touching the
surface of the cam. Camoids are
valuable in that they can generate any
well-behaved function of two inde-
pendent variables. They are, how-
ever, expensive to build with enough
precision, have considerable friction,
and take too much space. Bar link-
ages are always to be preferred to
camoids when it is possible to design Fre. 1-24.—Three-dimensional cam.
such a linkage.

1.8. Integrators.—Integrators are computers that have an output
parameter, X, and two input parameters, X, and X, functionally related

by

Xs — Xs0 = /X. F(X,)dX>. (25)

The simplest form of integrator gives

X2
Xs — X0 = KX:dXs. (26)

X0

The parameters X, X,, of an integrator can be varied at will; they can, for
instance, be given functions of time £. The value of the integral, as a
function of ¢, will depend on the form of these functions, and not merely
on the instantaneous values of X; and X,. Thus, unlike a function
generator, an integrator does not establish a fixed relation between the
instantaneous values of the parameters involved.
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The equations of integrators are conveniently written in differential
form; Eq. (26) becomes then

dX; = KXdX,. (27)

This is particularly convenient in schematic diagrams of complete com-
puting systems.

A common type of integrator is the friction-wheel iniegrator shown in
Fig. 1-25. The output parameter X; is generated by a friction wheel in
contact with a plane disk, the rotation of which is described by the
parameter X,. Since the motion of the friction wheel depends on friction
between the disk and the wheel, a normal force must act to maintain the
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Fia. 1-25.—Friction-wheel integrator.

frictional force at an adequate level; for this reason the disk is pressed
against the wheel by a spring. The friction wheel is transportable along
1ts axis; the distance from the axis of the disk to the point of contact is the
parameter X,;. In precision integrators the friction wheel is carried by a
fixed shaft and the rotating disk is moved with respect to the frame by the
amount X;. The equation of the integrator in the figure is

dX; = %dexg, (28)

where r is the radius of the friction wheel.

The double-ball integrator of Fig. 1-26 has the same equation as the
friction-wheel integrator; the difference between these two designs is con-
structive only. The friction wheel is replaced by two balls carried in a
small cylindrical container, as shown in the figure, or in a special con-
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F1a. 1-26.—Double-ball integrator.

Fia. 1-27.—Plan view of component solver,
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tainer with roller guides for the balls, to reduce friction. These balls
transfer the motion of the disk (XdX,;) to a drum of radius r, which
rotates through an angle dX; given by Eq. (28). The balls are easily
transportable, rolling along the drum, with which they are in contact
under constant pressure. This design is useful when one requires an
efficient compact computer but does not need the maximum accuracy
possible with mechanical integrators. The main source of error is the
lack of absolutely sharp definition of the distance from the axis of the
plate to the point of contact of the plate with the balls. Any lateral
freedom of the lower ball impairs the precision of the results.

The component solver shown in Fig. 1-27 is a good example of an inte-
grator of the more general type. A large ball of glass or steel is held
between four rollers placed in a square, with axes in the same plane, and
two rollers with axes parallel to that plane; the points of contact are at the
corners of a regular octahedron. (Figure 1-27 shows only five of the six
rollers.) The first four rollers have fixed axes, but the other two have
axes that are always parallel, but may assume any direction in the hori-
zontal plane. The rotation of these latter axes in the horizontal plane,
measured from a certain zero position, is the input parameter Xi; the
rotation of these rollers on their shafts is the second input parameter X3;
the rotation of any one of the four rollers on fixed axes may be taken as an
output parameter. Since rollers on parallel axes rotate through equal
angles, there are two different output parameters, X; and X, If all
rollers have the same diameter, the equations of the component solver are

dXs = cos X, dX,, (29a)
dX, = sin X,dX,. (29b)

Thus the component solver is described by Eq. (25), but not by Eq. (26).



CHAPTER 2
BAR-LINKAGE COMPUTERS

2-1. Introduction.—A bar linkage is, in the classical sense of the word,
a system of rigid bars pivoted to each other and to a fixed base. In this
volume the term ‘“bar linkage’ will denote any mechanism consisting
of rigid bodies moving in a plane and pivoted to each other, to a fixed base,
or to slides. Consideration will be limited to essentially plane mecha-
nisms because these are mechanically the easiest to construct. The
inclusion in bar linkages of rigid bodies of arbitrary form is not an essential
extension of the term, since any

rigid body can be replaced by a X
corresponding system of rigid bars. i
Similarly, the admission of slides is ’ L

not a real extension, since bar link- %
ages—in the classical sense—can —<—7—- -

be designed to apply the same &
constraints.

A link in a bar linkage is a body
connected to two other bodies by
pivots. A lever is a body connected
to three other bodies by pivots. A crank is a body pivoted to the fixed
base, and to one or more other bodies of the linkage. Figure 2-1 shows a
bar linkage that consists of a crank R, a link L, and a slide S.

Bar linkages are very satisfactory devices from a mechanical point of
view. Pivots and slides are easily constructed and have small backlash,
small friction, and good resistance to wear.

As computing mechanisms, bar linkages can perform all the functions
of the elementary function generators discussed in Chap. 1. They can-
not, however, be used to establish relations between differentials; they
cannot perform the functions of integrators. As function generators it is
characteristic. of bar linkages that they do not, generally speaking, per-
form their intended operations with mathematical accuracy; on the other
hand, they can generate in a simple and direct way, and with good approx-
imation, functions that can be generated only by complicated combina-
tions of the classical computing elements.

There are few standard bar-linkage function generators; one must
usually design a bar linkage for any given purpose. Methods for design-

ing such linkages from the mathematical point of view are the main sub-
27

X,
Fre. 2-1.—Bar linkage: a nonideal har-
monic transformer.
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ject of this book. The problem is to find a bar linkage that will generate
a given function. It must be noted immediately that in general this can
be accomplished exactly only by a linkage with an infinite number of
elements; mechanisms with a finite number of elements cannot generate
the complete field of functions. From a practical point of view, how-
ever, even the simpler bar linkages offer enough flexibility to permit solu-
tion of the design problem with an acceptably small error. The approach
to the problem must be synthetic and approximative, not analytic and
exact.

The mechanical design of bar linkages cannot be discussed in this
volume. It is of course possible to treat analytically the properties of a
given linkage: its motion, the distribution of velocities of its parts, acceler-
ations, inertia, forces. In this respect the theory of linkages has been
well developed, even in elementary texts; the kinematics of bar linkages
have been treated especially thoroughly. It is of course necessary that
the designer of linkages have knowledge of the practical properties of
these devices, even when he is primarily interested in their mathematical
design. In the present volume there will be some comment on the
mechanical features of bar linkages, but only enough to give the designer
the necessary base for reasoning when the design procedure is started.

2:2. Historical Notes.—Engineers and mathematicians have in the
past considered bar linkages primarily as curve tracers—that is, as devices
serving to constrain a point of the
linkage to move along a given
curve. The classical problem in
.- the field has been that of finding

‘T__—T a bar linkage that will constrain a
point to move along a straight
:l HIND J line. This problem was consjgid-
ered by Watt in designing his
steam engine. Watt found a
sufficiently accurate solution of
_J the problem, and it was the cost
and space required that caused the
use of a slide in his original design.
Bar linkages are now extensively
F1g. 2:2.—Bar linkages in a microscope plate  ysed in mechanical design because
holder. . . .
of their small frictional losses and
high efficiency in transmitting power—efficiency greater than that of any
gear or cam. The usefulness of bar linkages to the mechanical engineer
can be illustrated by a locomotive: its transmission contains the famous
parallelogram linkage, and the valve motions are controlled by bar
linkages of some complexity. A designer of linkage multipliers will
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recognize among these structures elements that he is accustomed to use
in his own work.

Bar linkages are used in heavy construction as counterweight linkages
and for the transmission of spring action. They also serve as elements of
fine instruments. The parallelogram linkage used to assure pure trans-
lational motion of a slide being examined by a microscope is illustrated in
Fig. 22. Springs are omitted from the diagram. The field of the micro-
scope is indicated at the center of the plate.

The problem of producing an exact straight-line motion by a bar
linkage was first solved by Peaucellier.! This was accomplished by
application of the Peaucellier inversor to the conversion of the circular
motion of a crank into a rectilinear motion. The Peaucellier inversor is
illustrated in Fig. 2-3. It consists
of a jointed quadrilateral with four
sides of equal lengths B, to the oppo-
site vertices of which there are
jointed two other bars of equal —=X
lengths A; these latter bars are
themselves joined at their other ends.
: Three jOintS of this structure neces- Fia. 2-3.—S8ix-bar Peaucellier inversor.
sarily lie on the same straight line, The solid lines illustrate the case B < 4,
and the distances X, and X, between the dashed lines the case B > 4.
these joints vary inversely with each other. It will be noted that X, is
the sum of the lengths of the bases of two right triangles of altitude T and
hypotenuses A and B respectively, whereas X is the difference of these
base lengths. We have then

X, = AT - T + /B = T%, (1a)
X, =AT—T - /BT (1)

In these equations 4, B, T, and the square roots are necessarily positive.
On multiplying together Eqgs. (la) and (1b) we obtain

X, X: = A? — B, (2a)

or

A2 —_ B2
X,
There are two variants of this inversor, with A greater than B or with

B greater than A. If Bis greater than A (dashed lines in Fig. 2-3), X, ig

always negative; there is no possibility of having X, equal X,. If 4 is

greater than B (solid lines in Fig. 2-3), it is possible to have

Xl = X2 = (Az - B2)”.

1 A concise summary of work in this field, by R. L. Hippisley, will be found under
Linkages, in the Encyclopedia Britannica, 14th ed.

X 2 = (2b)
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At this point the mechanism exhibits an undesirable singularity; the
joints P and @ of Fig. 2-3 become coincident, and self-locking of the
device may occur. These two forms of the Peaucellier inversor also
differ in their useful ranges. These are

NVAT-B'< X, <A+B, ifA>B, (3a)
B-A<X;<A+B,  ifA<B. (3b)

The freedom from self-locking and the greater range make it desirable
to have B greater than A. Figure 2-4 shows the Peaucellier inversor in a
form suitable for use as a computer.

Fia. 2-4.—Three-bar Peaucellier inversor. Fig. 2:5.—The Hart inversor.

Another inversor has been devised by Hart.!

The Hart inversor (Fig. 2-5) is essentially a bar-linkage parallelogram
with one pair of bars reflected in a line through opposite vertices. Let any
line OS be drawn parallel to a line UV through alternate vertices of the
quadrilateral. It can be shown that this will intersect adjacent bars of
the linkage at points O, P, @, that remain collinear as the linkage is
deformed; furthermore, the distances X; = OQ and X, = OP will vary
inversely with each other.

There have been described linkages for the tracing of conic sections,
the Cassinian oval, the lemniscate, the limagon of Pascal, the cardioid, and
the trisectrix; indeed it is theoretically possible to describe any plane
curve of the nth degree in Cartesian coordinates z and y by a bar linkage.?
Linkages for the solution of algebraic equations have also been devised.?

1 H. Hart, “On Certain Conversions of Motion,” Messenger of Mathematics, 4, 82
(1875).

* A, Cayley, ‘On the Mechanical Description of a Cubic Curve,” Proc. Math. Soc.,
Lond., 4,175 (1872). G. H. Dawson, ‘‘ The Mechanical Description of Equipotential
Lines,” Proc. Math. Soc., Lond., 6, 115 (1874). H. Hart, ‘‘On Certain Conversions of
Motion,” Messenger of Mathematics, 4, 82 and 116 (1875); “On the Mechanical
Description of the Limagon and the Parallel Motion Deduced Therefrom,” Messenger
of Mathematics, 6, 35 (1876); ‘‘On Some Cases of Parallel Motion,” Proc. Math. Soc.,
Lond., 8,286 (1876-1877). A. B. Kempe, ‘‘On a General Method of Describing Plane
Curves of the nth Degree by Linkwork,” Proc. Math. Soc., Lond., T, 213 (1875); “On
Some New Linkages,” Messenger of Mathematics, 4, 121 (1875). W. H. Laverty,
‘“Extension of Peaucellier’s Theorem,” Proc. Math. Soc., Lond., 6, 84 (1874).

? A. G. Greenhill, *‘Mechanical Solution of a Cubic by a Quadrilateral Linkage,”
Messenger of Mathematics, b, 162 (1876). A. B. Kempe, '‘On the Solution of Equa-
tions by Mechanical Means,” Messenger of Mathematics, 2, 51 (1873).
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Analytical studies! have been made of the “three-bar motion” of a
point C rigidly attached to the central link AB of a three-bar linkage
(Fig. 2:6). Three-bar motion is very useful in the design of complex
computers, and will be discussed in Sec. 10-4.

To complete this survey of the bar-linkage
literature in English, it will suffice to mention the
papers of Emch and Hippisley on closed linkages.?

2-3. The Problem of Bar-linkage-computer
Design.—Tt is only recently that much attention
has been paid to the problem of using bar linkages  ¥Fi6. 2:6.—Three-bar
. . . . . linkage with point
in computing mechanisms. The literature in the |isdly attached to the
field is especially restricted. The author knows of central bar.
only one published work that employs the synthetic approach to bar-
linkage computer design®—and this in a more restricted field than that of
the present volume.

The basic ideas in the synthetic approach to bar-linkage design are
simple, but quite different from the ideas behind the classical types of
computers. Bar linkages can be characterized by a large number of
dimensional constants, and the field of functions that they can generate
is correspondingly large—though not indefinitely so. Given a well-
behaved function of one independent variable, one should be able to
select from the field of functions generated by bar linkages with one degree
of freedom at least one function that differs from the given function by a
relatively small amount. The characteristic problem of bar-linkage
design is thus that of selecting from a family of curves too numerous and
varied for effective cataloguing one that agrees with a given function
within specified tolerances.

The presence of a residual error sets bar linkages apart from other
computing mechanisms. The error of a computer of classical type arises
from its construction as an actual physical mechanism, with unavoidable
imperfections. It is possible to reduce the error to within almost any
limits by sufficiently careful design—as, for instance, by enlarging the

1A. Cayley, ““On Three-bar Motion,” Proc. Math. Sec., Lond., T, 136 (1875). R.
L. Hippisley, “A New Method of Describing a Three-bar Curve,” Proc. Math. Soc.,
Lond., 15, 136 (1918). W. W. Johnson, ‘“On Three-bar Motion,”” Messenger of Mathe-
matics, 5, 50 (1876). 8. Roberts, “On Three-bar Motion in Plane Space,”” Proc. Math.
Soc., Lond., T, 14 (1875).

* A, Emch, “Illustration of the Elliptic Integral of the First Kind by a Certain
Link-work,” Annals of Mathematics, Series 2, 1, 81 (1899-1900). R. L. Hippisley,
*Closed Linkages,” Proc. Math. Soc., Lond., 11, 29 (1912-1913); “Closed Linkages and
Poristic Polygons,” Proc. Math. Soc., Lond., 18, 199 (1914-1915).

3 Z. 8h. Blokh and E. B. Karpin, “Practical Methods of Designing Flat Four-sided
Mechanisms,” Izdatelstvo Akademie nauk SSSR, Moscow, Leningrad (1943). E. B.
Karpin, “Atlas of Nomograms,” Izdatelstvo Akademie nauk SSSR, Moscow, Lenin-
grad (1043).

c
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whole computer. In bar linkages there is usually a residual error that
cannot be eliminated by any care in construction, an error that is evident
in the mathematical design of the device, as well as in the finished product.
This error will be called “structural error” because it depends only on the
structure of the computer, and not on its size or other mechanical proper-
ties. Reduction of structural error requires a change in the structure of
the computer—usually the addition of parts. The great number of
adjustable dimensional constants gives greater flexibility and extends the
field of functions that the linkage can generate; from this larger field of
functions one can then select a better approximation to the given function.

The fact that bar linkages can be used to generate functions of a large
class has been known for many years, and has been used (instinctively,
rather than with a full development of the theory) by designers of mecha-
nisms. The field of functions that can be generated by some simple bar
linkages has been analytically described. This, however, represents only
the easier half of the problem; what one needs is to describe the field of
functions that can almost be generated by a given type of linkage. The
first attempts to solve this problem for one independent variable have
been tabular or graphical. For very simple structures it is possible to
devise graphs that allow one to determine whether a given function can be
generated approximately by such a structure, and what structural error
is inevitable. These methods are practicable if the linkage can be
specified by means of only two dimensional parameters—that is, if the
field of functions depends upon only two adjustable parameters. Such
graphical methods are difficult or are necessarily incomplete if the field of
functions depends upon three adjustable parameters. Such a procedure
can hardly be attempted when four or more dimensional parameters are
involved.

The design methods presented in this book are in many cases based
on a graphical factorization of the given function into functions suitable
for mechanization by simple linkages; the elements of the mechanism
designed in this way can then be assembled into the desired complete
linkage. By such methods it is possible to design linkages having a
great many adjustable parameters, but the solution obtained cannot be
claimed to be the best possible. Usually it is easy to apply these methods
to find bar linkages that have errors everywhere within reasonable
tolerances. This is ordinarily sufficient for practical purposes.

2-4, Characteristics of Bar-linkage Computers.—The special proper-
ties of bar-linkage computers may be summarized as follows.

Advantages.

1. Bar linkages occupy less space than classical types of computers.
2. They have negligible friction.
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They have small inertia.

They have great stability in performance.

5. Their complexity does not necessarily increase with the complexity
of the analytical formulation of the problem.

6. They are easy to combine into complex systems.

7. They are relatively cheap.

bl o

Disadvantages.

Bar linkages usually possess a structural error.

. The field of mechanizable functions is somewhat restricted.

. The complexity of the linkage increases with decreasing tolerances.

. Linkage computers are relatively difficult to design. The difficulty
of the design procedure increases with increasing complexity and
decreasing tolerances.

5. The travel of the mechanism is usually limited to a few inches.

Backlash error and elasticity error must be reduced by careful

construction: the use of ball bearings is essential, and rigidity of the

structure perpendicular to the plane of motion must be assured.

The design should be such that mechanical errors are less than the

assigned tolerances for structural error.

W

Bar linkages can attain extensive use as elements of computers only as
efficient methods of design are established. The complexity and difficulty
of the design procedure depends largely on the nature of the given func-
tion. It is usually easy to design a linkage with a structural error that
does not exceed 0.3 per cent of the whole range of motion of the computer.
It becomes relatively laborious to reduce the structural error below 0.1 per
cent. If the tolerances are below 0.1 per cent—as a typical value—
alternatives to the use of a bar linkage should be explored.

Bar linkages can advantageously be combined with cams when the
tolerated error is small and a bar linkage alone would be excessively com-
plex. For instance, if a given function of one independent variable were
to be mechanized with an error of not more than 0.01 per cent, it might be
desirable to mechanize this function by a simple bar linkage with an error
of, for example, 1 per cent, and to use a cam to introduce the required
correction term. Since this corrective term represents only 1 per cent of
the whole motion of the linkage, it need not be generated with very high
precision; for instance, if the working displacement of the cam is to be
1in., it can be fabricated with a tolerance as rough as 0.01 in.

It is a feature of bar-linkage computers that they can be used to
generate functions of two independent variables in a very direct and
mechanically simple way. Methods for the design of linkages generating
functions of three independent variables are not now available when it is
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not possible to reduce the problem to the mechanization of functions of
one or two independent variables; there is, however, some hope that
practically useful methods can be found.

Bar-linkage computers have great advantages when feedback is to
be used in the design of complex computers. In computers of the classical
type, feedback motion must be a small fraction of the total output motion.
Linkage computers can, however, operate very close to the critical feed-
back—that is, the degree of feedback at which the position of the mecha-
nism becomes indeterminate.

2-6. Bar Linkages with One Degree of Freedom.—Bar linkages with
one degree of freedom serve the same purpose as cams; they may be
called “linkage cams.” The parallelogram linkage of Fig. 2-2 and the
linkage inversors have motions expressed accurately by very simple
formulas, but they are not generally useful in the mechanization of given
functions. For this purpose, the following bar linkages are much more
interesting,.

The harmonic transformer, shown in Fig. 21, establishes a relation
between an angular parameter X, and a translational parameter X,. Itis
convenient to disregard variations in the form of this relation due to
changes in scale of the mechanism—to consider as equivalent two geo-
metrically similar mechanisms. The field of functions

X» = F(Xy) (4)

generated by the harmonic transformer then depends upon two ratios of
dimensions: L/RE and E/R, the ratios to the crank length of the link
length and the displacement of the crank pivot from the center line of the
slide. As L is increased from its minimum value, the plot of X, against
X1 changes (in a typical case) from an isolated point to a closed curve,
then to a sinusoid, and finally, in the limit as L approaches infinity, to a
pure sinusoid. From a practical point of view, the pure sinusoidal form is
reached for links short enough for practical use. In the limiting case,
L = w, the equation of the harmonic transformer is

X, = Rsin X, + C. (5)

Such a harmonic transformer will be called “ideal.”’

Only rarely is the complete range of motion of a harmonic transformer
used. When the range of the parameter X, is limited to X1, < X; < Xy»
and the functions defined within these restricted limits are taken as ele-
ments of a new functional field, there is obtained a four-dimensional
functional field depending on X, and Xy as well as on L/R and E/R.
Methods for the design of harmonic transformers will be discussed in
Chap. 4.
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The three-bar linkage shown in Fig. 2-7 consists of two cranks pivoted
to a frame and joined at their free ends by a connecting link. As a
computer, this serves to ‘ compute’ the parameter X, as a function of
the parameter X;. The linkage itself is described by four lengths: A4, B,
As, Bs. The field of functions generated by this type of linkage is only
three-dimensional, because two geometrically similar mechanisms estab-

F1a. 2:7.—Three-bar linkage. F1a. 2:8,—Three-bar linkage modified by
eccentric linkage.

lish the same relation between X; and X,. The field of functions thus
depends on three ratios—for example, B,/A,, As/Ay, and B;/A,. TUsu-
ally only a part of the possible motion of the mechanism is used. Limits
of motion can be assigned for X; or X,, though, of course, not independ-
ently for the two parameters; for instance, one may fix X, < X; < Xia.
This increases the number of independent parameters by two; the field of
functions generated by a three-bar linkage operating within fixed limits

-

.
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\

Stationary ‘/I'/

‘iii

F16. 2-9.—Harmonic transformer modified by eccentric linkage.

is five-dimensional. In Chap. 5 we shall see how to design a three-bar
linkage for the approximate generation of a given function.

The eccentric linkage is not a bar linkage, but is so conveniently used in
connection with bar linkages that it should be mentioned here. Figure
2-8 shows a three-bar linkage modified by the insertion of an eccentric
linkage. One crank of the three-bar linkage carries a planetary gear that
meshes with a gear fixed to the frame. The central link is then pivoted
eccentrically to the planetary gear, rather than to the crank itself. Link-
ages of this type will be discussed in Sec. 7-9, where their importance will
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Fia. 2:10.—Double three-bar linkage generating the logarithmie function.
be explained. Another important application of the eccentric linkage isin
the modification of harmonic transformers, as illustrated in Fig. 2-9. 1tis

Fia. 2:11.—Bar linkage with two degrees of
freedom.

possible to choose the constants of
the eccentric linkage in such a way
that the linkage output is an
almost perfect sinusoid, even
though the length of the link L is
relatively small.

Combinations of these linkages
to be discussed in this book are
the double harmonic transformer
(Sec. 4-9 and following), harmonic
transformers in series with three-

bar linkages (Sec. 8-1 and following), and the double three-bar linkage
(Sec. 8:8). Figure 2-10 shows a double three-bar linkage that generates
the logarithmic function through the range indicated in the figure.
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2-6. Bar Linkages with Two Degrees of Freedom.—Bar linkages with
two degrees of freedom can be used in the generation of almost any
well-behaved function

X3 '——-F(X], Xz) (6)

of two independent variables. They provide a mechanically satisfactory
substitute for three-dimensional cams, which have many disadvantages

and are to be avoided if possible. ¥
1

Figure 2-11 shows a linkage with
two degrees of freedom, which
consists of three cranks connected
by two links and a lever. The {
lever will degenerate into a simple 7L
link if the pivots A and B are b
superposed; the resulting struc- & SN l(% X; D
ture of three links jointed at a +— ——k ———1%
. . . e @& oy Rz
single pivot will be called a “star F—— e L
linkage.” Its properties are dis- ‘ Y- -8, | &
cussed in Chap. 9.

The bar-linkage adder shown X;

in Fig. 2-12 consists of essentially
the same parts as the linkage of
Fig. 2-11, except that slides are used instead of cranks to constrain the
links. The dimensions obey the simple relation

F1a. 2-12.—Bar-linkage adder.

4L B0 @

It is easy to show that when this proportionality holds, the three pivots
Py, P,, and P; lie on a straight line. This device can, therefore, be used
to mechanize any alignment nomogram that consists of three parallel
straight lines; in particular, it can be used to mechanize the well-known
npmogram for addition. If X, X, and X, are three parameters measured
along these lines in the same direction from a common zero line, then

(A1 + 43) X5 = A Xy + A X, ®

This bar linkage is free from structural error.

In contrast to the adders, bar-linkage multipliers do not perform the
operation of multiplication exactly, but with a small error; the equation of
such a multiplier is

RXs = X1Xz + 3, (9)

where 8, the error of the multiplier, is a function of the two independent
parameters X, and X,. The design of multipliers will be discussed in
Chap. 9; a much simplified explanation of the principle will be given here.
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Figure 2-13 shows the essential elements of one type of multiplier.
Three bars of equal lengths, B, = R, = R; = 1, are pivoted together.
The first is pivoted also to the frame at the point O, the third to a slide
with center line passing through 0. If the joints 4; and A, are placed
at distances X; and X, from the center line of the slide, the distance
O8S = D will be exactly

D=vi=Xi-Vi-G-Xy+vi-X o)

Expanding in series the terms on the right, one obtains

X3s=1-D = XX, +‘%X1X§ - -}X%X% +%X§X2 = ) (11)

where X, is the displacement of the pivot 8 from the position S, which it
occupies when X; = X, = 0 and
the three links are coincident. Tt
is evident that X; is equal to the
product XX, to the approxima-
tion in which the terms of fourth
and higher degrees can be neg-
lected in comparison with the
term of the second degree. For
sufficiently small values of X; and
Fia, 2-13.—Element§ _of a bar-linkage X, this mechanism is thus a
multiplier. .

multiplier for these parameters.
Such a multiplier is not practical, however, because of its small range of
motion. If the error in the multiplication is to be kept below 1 per cent,
it is necessary to keep X1, X» £ 0.2. [If X, = X, = 0.2, then

X;= (02?24 3024+ « - -,

and the fractional error is almost exactly one per cent.] Under these
conditions, however, one has X; = 0.04, an impracticably small range of
motion. .

There are in principle two ways to improve this multiplier. With
either method it is necessary to make the structure more complicated—to
add new adjustable parameters. One possible arrangement is indicated
in Fig. 2:-14. Here the parameter X, is a displacement of a slide (of
adjustable position) that controls the position of the joint A, through a
link of adjustable length Ls; X; becomes an angular parameter, the angle
turned by a crank with adjustable length and pivot position.

With the first method, the output parameter X; is expressed in
terms of X, and Xy, in the form of a series with coefficients which depend
on the adjustable dimensions of the mechanism. These dimensions can
then be s0 chosen as to cause the terms of the fourth degree in X; and X,
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to vanish. In this way, the multiplier can be made more accurate for
small values of X; and X, and the domain of useful accuracy sub-
stantially increased. Toward the limits of this domain, however, the
inaccuracy of the multiplier will
increase very rapidly.

The second method for im-
proving the multiplier—that
followed in this book—can be indi-
cated only very roughly at this
point. It involves comparison of
the ideal product and the function
actually generated by the multi-
plier over the entire range of ]
motion, and adjustment of the
dimensional constants of the sys-
tem in such a way that the error of the mechanism is brought within
specified tolerances everywhere within this domain. To see in principle
how this can be done, let us consider the mechanism of Fig. 2:13. Let
X; and X, be given a series of values that have the fixed ratio

X ,
Yj = X} (12)

——————D

Fia. 2:14.—Modified bar-linkage multiplier.

If this linkage were an exact multiplier, the pivot 4. would indicate always
the same value of X,; it would move along a straight line at constant
distance X from the line of the slide. Actually, the pivot A will describe
a curve that is tangent to this straight line for small values of X, and X,
but will diverge from it as these parameters increase. To each value of
X, there will correspond another curve; the curves of constant X, form a
family, each of which can be labeled with the associated value of this
parameter. Now we can make this muiltiplier exact if we can introduce
a constraint which, for any specified value of X5, will hold the pivot A4,
on the corresponding curve of this family. For example, if these curves
were all circles with the same radius L, and centers lying on a straight
line, it would be possible to use the type of constraint illustrated in Fig.
2-14. The X,-slide could then be used to bring the pivot A; to the center
of the circle corresponding to an assigned value of X, and the pivot
A, would stay on that circle, as required. Actually, the curves of con-
stant X, will not form such a family of identical circles. It will, however,
be possible to approximate them by such circles in a way which will split
the error and bring it within tolerances held fairly uniformly over the
whole domain of action. Unlike the multipliers designed by the first
method, a multiplier thus designed will not have unnecessarily small errors
in one part of the domain and excessively large errors in another part.
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This concept of multiplier design must be very greatly extended before
it can lead to the design of satisfactory computers. A powerful guidein
beginning the work is provided by the idea of nomographic multipliers,
already discussed in See. 1-5. It is possible to design approrimate inter-
section nomograms for multiplication that have as their mechanical
analogues bar linkages with two degrees of freedom. For instance, Fig.
8:14 shows a nomogram for multiplication obtained by topological trans-
formation of the nomogram of Fig. 1-12; it consists of two families of
identical circles and a third family of curves that can be very closely
approximated by a family of identical circles. This nomogram cor-
responds to the bar-linkage multiplier illustrated in Fig. 815, which, on
improvement of its mechanical features, takes on the form shown in Fig.
8:16. The design techniques to be described in Chaps. 8 and 9 make it
possible to design multipliers with large domain of action and good
uniformity of performance through this domain.

Multipliers can be used to perform the inverse operation of division;
that is, they can be used to evaluate X, = X;3/X1. It is, of course,not
possible to divide by zero; when a multiplier is used in this way X, will
never pass through zero. It is therefore useless to attempt to reduce to
zero the error of such a multiplier for values of X very near to zero; it
is also undesirable to attempt to reduce the errors of the device for nega-
tive values of X; when only positive values can be introduced. For this
reason three types of multiplier may be distinguished.

1. Full-range multipliers, for which both input parameters can change
signs.

2. Half-range multipliers, for which only one parameter can change
signs.

3. Quarter-range multipliers, for which neither input parameter can
change signs.

Dividers may be divided into two types.

1. The plus-minus type, for which the numerator may change sign.
2. The single-sign type, for which all-parameters have fixed signs.

An example of a practical full-range linkage multiplier is shown in Fig.
8:16; a half-range multiplier is shown in Fig. 9-15.

2.7. Complex Bar-linkage Computers.—The elementary linkage cells
already described may be combined to form complex computers. Since
simple linkages can add, multiply, and generate functions of one and two
independent variables, bar-linkage computers can solve any problem that
can be expressed in a system of equations involving only these operations.
The field of application of bar-linkage computers is quite large; they
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are especially useful if the computer must be light, as when it is to be
carried in aircraft or guided missiles.

An important feature of bar-linkage computers is the ease with which
the cells can be assembled into a compact unit. It is natural to spread
the parts of the computer out in a plane, to produce a rather flat mecha-
nism with its parts easily accessible. The connections between cells
are provided by shafts or connecting bars.

There is a simple trick that makes the connection of linkage cells even
easier, and the structure of some cells less complex. The simplification
of linkage adders is a characteristic x
example of this trick. The bar-link- |, =— Ly B
age adder shown in Fig. 2:12 has no
structural error. Any deviation from
the principle of this design is likely to
lead to a structural error; it is, how-
ever, possible to change the principle
in such a way that the structural error
is negligibly small. For instance, if
the links B; and B, are very long,
their lengths can be chosen at will without appreciably affecting the
accuracy of the addition. Figure 2-15 shows such an approximate adder;
its equation is

F16. 2:15.—Bar-linkage adder (approxi-
mate).

(A4 A)Xs ~ A1 X1 + A.X,. (13)

The links L, and L, must be so long that they lie nearly parallel to the lines
of the slide, but they need not be exactly parallel to each other. The
action of this device depends upon the essential constancy of the projec-
tion of the lengths of these bars along the line of the slides. Let X4, X},
and X3 be defined as the distances of the pivots Py, P,, and P; from some
zero line perpendicular to the line of the slides. One then has, exactly,

(A1 + A9 X5 = A X7 + A.X;. (14)

Now let 8, be the angle between the bar L, and the line of the slides.
Then

Xl =X’1+L1 CcOos 01+C, (15a)

= X7 — Li(1 — cos 6;) + (C + L,). (15b)

Except for an additive constant (which can be reduced to zero by proper
choice of the zero point), X{ and X, differ only by the variable term
Li(1 — cos 81). As L, is increased, 6; decreases with 1/L;, (1 — cos 8,)
decreases with 1/L%, and Li(1 — cos §,) decreases with 1/L;. Thus, by
making L, large and properly choosing the zero point, one can make X,
and X differ by a negligibly small term. In the same way X, can be
made negligibly different from X7; X; and Xj are identical. Equation
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(13) follows as an approximation to Eq. (14). If 6, is kept less that
0.035 radians (about 2°) the difference between X and X{ will be about
0.0006 L;. Thusif the bars deviate from parallelism with the slides by no
more than +2° during operation of the adder, the resulting error in the
output will not exceed 0.06 per cent of the total length of the bars.

If the lengths of the bars in approximate adders are great enough, it is
even immaterial whether the slides move along straight lines; the essential

e

-
X,
Fig. 2:16.—Combination of approximate adders.

thing is that the parameters be measured as distances from a zero line.
It is, therefore, possible to connect adding cells through long connecting
bars, and to omit some of the slides that would appear in the standard
construction. Fig. 2:16 shows a combination of three adding cells that
will solve (approximately) the equations

(Al + A2)X3 = A1X1 + AzXz,

(D4 + Ds)X1 = DX, + D5X5, (16)

(Es 4+ Ee)X7 = EsXs + EsXo.




CHAPTER 3
BASIC CONCEPTS AND TERMINOLOGY

The present chapter will define the terminology to be employed in
discussing bar-linkage design and introduce some coacepts with wide
application in the field, Of particular importance are the concepts of
“homogeneous parameters’’ and ‘“‘homogeneous variables,” and a graphi-
cal calculus used in discussing the action of computing mechanisms in
series.

3-1. Definitions. Ideal Functional Mechanism.—Any mechanism
can be used as a computer if it establishes definite geometrical relations
between its parts—that is, if it is sufficiently rigid and free from backlash,

Zero
position

Fia. 3-1.—Crank terminal. Fig. 3-2.—Slide terminal.

slippage, or mechanical play. In the following discussion we shall be
concerned only with such ideal functional mechanisms.

Terminals.—The terminals of a computing mechanism are those ele-
ments that, by their motions, represent the variables involved in the
computation. The motion of all terminals is usually specified with
respect to some common frame of reference. If the position of a terminal
is controlled in order to fix the configuration of the mechanism, it may be
called an “input terminal”; if its position is used in controlling a second
mechanism, or is simply observed, it may be called an “ output terminal.”
A terminal may be suitable for use only as an input terminal, or only as an
output terminal, or in either way, according to the nature of the mechanism.

43
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Terminals that are mechanically practical are of two kinds:

1. Crank or rotating-shaft terminals (Fig. 3-1), which represent a
variable by their angular motion.

2. Slide terminals (Fig. 3-2), which represent a variable by a linear
motion.

Parameters.—A parameter is a geometrical quantity that specifies the
position of a terminal. With a crank terminal, it is usually the angular
position of the terminal with respect to some specified zero position; with a
slide terminal, it is usually the distance of the slide from a zero position.
Parameters may be defined in other ways— for instance, as the distance
of aslide terminal from some movable element of the mechanism—but such
parameters are less generally useful than those just mentioned.

An input parameter describes the position of an input terminal, an
output parameter that of an output terminal.

Linkage Computers.—A linkage computer establishes between its
parameters, X;, X,, . . . X,, definite relations of the form

Fr(Xl,Xz,"'X¢)=O; T=1,2,"‘, (1)

which involve only these parameters and the dimensional constants of the
mechanism. With more general types of mechanisms these equations of
motion may also involve derivatives of the parameters. Such mecha-
nisms are useful in the solution of differential equations, but they will be
excluded from our future considerations; we shall be concerned only with
linkage computers, which generate fixed functional relations between the
parameters.

To describe the configuration of linkage computers with n degrees of
freedom, one must in general specify the values of n input parameters,

X1, Xs, . . . X4 The values of any number of output parameters can
then be expressed explicitly in terms of these n parameters:
Xow =G (Xq, Xo. « + - X,), r=12 - m. (2)

Domain.—The parameters of a computing mechanism cannot, in
general, assume all values. The limitations may arise from the geometri-
cal nature of the mechanism (a linear dimension will never change without
limit) or from the way in which it is employed. To each possible set of
values of the input parameters X, . . . X,, there corresponds a point
(X, Xo, . . . X,) in n-dimensional space; to all sets of values that may
arise during a specific application of the mechanism, there corresponds a
domain in n-dimensional space, which will be referred to as the “domain”
of the parameters. It must be emphasized that the domain of the param-
eters is not necessarily determined by the structure of the mechanism,
but by the task set for it.
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In the most general case, the domain of the input parameters may be of
arbitrary form—except, of course, that it must be simply connected,
since all parameters must change continuously. In such cases the values
posgible for any one parameter may depend on the values assigned to other
parameters. A mechanism will be said to be a ‘‘regular mechanism’
when each input parameter can vary independently of all others, between
definite upper and lower limits,

Xim £ Xi £ Xin, t=1,2 -"-n, (3)
which define the domain of the parameter. With angular parameters,
neither of these limitsis necessarily finite: it is possible tohave X; = — w0,
or X.'u = + %,

The output parameters of a regular mechanism will vary between
definite (though not necessarily finite) limits as the input parameters
take on all possible values. These limits serve to define a domain for
each output parameter. Although the input parameters vary inde-
pendently through their respective domains, this is not always true of the
output parameters.

Travel—The range of motion of a terminal is called its “travel.”
This is

AX; = Xiy ~ Xim, 4)

both for input and output terminals,

Variables.—The term ‘“variable” will denote the variables of the
problem which the computing mechanism is designed to solve. A varia-
ble will be associated with each terminal of a mechanism, an input variable
with an input terminal, an output variable with an output terminal. To
each value of a variable there will correspond a definite configuration of
the terminal; each variable, then, will be functionally related to a param-
eter of the mechanism:

Ty = d)‘(X.) 1 = 1, 2, ot (5)

It is important to keep in mind the distinction between parameters,
which are geometrical quantities measured in standard units, and the
variables of the problem, which are only functionally related to the param-
eters. In this book, variables will be denoted by lower-case letters,
parameters by capitals.

Scales.—The value of the variable corresponding to a given configura-
tion of a terminal can be read from a scale associated with that terminal.
The calibration of this scale is determined by the form of the functional
relation between z; and X;. If z;is a linear function of X; the scale will
be even—that is, evenly spaced calibrations will correspond to evenly
spaced values of ;. Such a scale may also be referred to as “linear,”
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in reference to the form of the functional relation represented. (This term
does not describe the geometrical form of the scale, which may be circular.)
A linear terminal is a terminal with which there is associated a linear
scale.

Range of a Variable—As a parameter changes between its limits,
X.m and X, the agsociated variable will also change within fixed, but not
necessarily finite, limits:

Tim = X S Tinm. (6)
In the case of a regular mechanism, this may be referred to as the
“domain’ of the variable; its range is

Az = Zim — Tim. (7

Mechanizaizon of a Function.—An ideal functional mechanism estab-
lishes definite relations between its parameters:

F"(Xllel...):O! 7‘=1,2,"'. (8)

It may be said to provide ‘“‘a mechanization’ of these functional relations
within the given domain of the independént parameters.

Such a mechanism, together with its associated scales, similarly pro-
vides a mechanization of functional relations,

fl@y, 2y 02 ) =0, r=12 """, 9)

between the variables x;, within a given domain of the independent varia-
bles. The forms of these relations may be derived by eliminating the
values of the parameters X; between Eq. (8), which characterizes the
mechanism, and Eq. (5), which characterizes the scales.

1 2 3 45
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F1a. 3-3.—Input scale.

If the output variables are to be single-valued functions of the input
variables, the input parameters must be single-valued functions of the
input variables, and the output variables must be single-valued functions
of the output parameters; it is not, however, necessary that the inverse
relations be single-valued. Thus an input scale may have the form shown
in Fig. 3-3, and an output scale that shown in Fig. 8-4, but not the reverse.

Linear Mechanization.—A mechanization of a relation between varia-
bles will be termed a “linear mechanization” if all scales are linear.
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A nonlinear mechanization of a given function may be useful when
input variables are set by hand, and only a reading of the output variables
isrequired. When a computing mechanism is to be part of a more com-
plex device, it is usually necessary that the terminals have mechanical
motion proportional to the change in
the associated variable—that is, a linear
mechanization of the function is needed.
For instance, if one has only to com-
pute the superelevation angle for an
antiaircraft gun it may be quite satis-
factory to read this on an unevenly
divided scale. If, however, one wishes
to use the computer to control directly
the sight on a gun, then a linear mecha~
nization of the superelevation function
will be required.

It is a trivial matter to design a
nonlinear mechanization of a function
of one independent variable. One
requires only a single pointer, serving
both as input and output terminal, to indicate corresponding values of
input and output variables as parallel scales (Fig. 3-5). For this reason
the term mechanization as applied to functions of a single independent
variable will always denote linear mechanization; a distinction will be
made between linear and nonlinear mechanization only in the case of
linkages of two or more degrees of freedom.

F16. 3-4.—Output scale.

1
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F16. 3-5.—Nonlinear mechanization of a function of one independent variable.

3-2. Homogeneous Parameters and Variables.—Homogeneous vari-
ables and parameters are very useful tools in the design of individual
computing linkages, and also in the drawing up of schematic diagrams for
complex computers. They are defined only for variables and parameters
which vary within finite limits.

Associated with each variable z; having a finite range Az; is a homo-
geneous variable defined by

Zi — Tim

by = —— (10)-

Zixr — Tin




48 BASIC CONCEPTS AND TERMINOLOGY [SEc. 3-2

As z; varies from its lower to its upper bound, %; varies linearly with it,
from 0to 1. Theinverseform of Eq. (10) may be written

i = Tim + hiAz, 1

Another homogeneous variable, “complementary to h;,” is defined by

o Tim — X
hi = Tiv — :E.-,,.’ (12)
or by
hi + ki = 1. (13)

In the same way, there are associated with each parameter X;, having
a finite travel AX;, two complementary homogeneous parameters,

Xt' — Xim
H.-_— Xw =X (14)
H =1-H, (15)
which change linearly with X; between bounds 0 and 1:
Xi = Xim + HAX; = Xin — HAX,. (16)

In a linear mechanization, the homogeneous variables and parameters
are very simply related. The quantities X; and z; are connected by a
linear relation,

X — X = kiz: — ). a7
If k; is positive, the minimum values of X; and z; occur together, as do the
maximum values:

Xim — XSO) = kt‘(zim - xsm)y (18(1)
k: > 1)
X — X = ki(zie — ). (18b)
It follows by introduction of these relations into Egs. (10) and (14) that
H; = h. (k: > 1). (19)

If k; is negative, the maximum value of X; occurs together with the mini-
mum value of z;, and conversely:

Ximn — XO = Ei(zine — 2®), (20q)
(ki < 1)
X — X = ki(Tim — 2{"); (200)
then
H=K=1—h. (k: < 1). (21)

Equation (19) will be referred to as the “direct’’ identification of H;
with A It implies that X; and z: are linearly dependent on each other,
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changing in the same sense between minimum and maximum values
which they attain simultaneously; the scale of x; is even, and increases in
the direction of increasing X;. Equation (21) will be termed the *com-
plementary identification” of H; and k;; it implies that the scale of z; is
even, and increases in the direction of decreasing X;.

In terms of homogeneous variables, the problem of linearly mechaniz-
ing a given function takes on a particularly simple form. For instance,
if the given function involves a single independent variable, it may be
expressed in terms of a homogeneous input variable k; and a homogeneous

output variable hs:
hz = f(hl)- (22)

A linkage with one degree of freedom, operating in a specified domain of

the input parameter,
Xim £ X; £ Xin, (23)

will generate a relation between homogeneous input and output param-
eters, Hy and H,, respectively:

H, = F(H,). (24)

It is then required to find a mechanism and domain of operation such that
Eq. (24) can be transformed into the given Eq. (22) by direct or comple-
mentary identification of H, with h,, with H; with h,.

The usefulness of homogeneous parameters and variables will be
abundantly illustrated in the chapters to follow.

3.3. An Operator Formalism.—It is often necessary to combine
mechanisms in series, in such a way that the output parameter of the
first becomes the input parameter of the second, and so on. The first
mechanism determines an output parameter X, as & function of the input
parameter X:

X2 = ¢1(Xy). (25a)
The second mechanism determines an output parameter X;in terms of X,

X3 = ¢2(X>); (250)
the third determines an output parameter X, in terms of X 3

X = ¢3(Xs); (25¢)

and so on. The final output parameter, for example, X, is then deter-
mined as a function of X;:

X = ¢s{ (X D]} (26)

The conventional notation of Egs. (25) and (26) is fully explicit, but some-
times cumbersome. For many purposes the author finds it more con-
venient and more suggestive to use the following operator notation.
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Equation (25a) implies that the value of X can be obtained by carry-
ing out an operation (of character specified by the definition of ¢1) on the
value of X;. As an alternative notation we shall write

X, = (X2[X1) « X, (27a)

where (XX ) denotes an operator converting the parameter X, into the
parameter X,. Similarly, Egs. (25b) and (25¢) become

X5 = (X;|X,) - X, (27b)
X4 = (X4|X3) - Xa. (270)

In this notation Eq. (26) becomes
Xy = (X4 X3) - (Xa]X2) - (Xo|X0) - X (28)

This form shows clearly the successive operations carried out upon X,
to produce X, It will be noted, however, that the operators are dis-
tinguished from each other only by specification of the parameters
involved; it is not possible to change the argument of a given function, as
in the conventional functional notation.

The over-all effect of Eqgs. (27) is to define X as a function of X;:

X4 = (X4IX1) * X]_. (29)
On comparing Eqs. (28) and (29) we obtain the operator equation
(X4l X3) - (X X0) - (X?.le) = (X JX)). (30)

The form of this equation calls our attention to a possible manipulation
of these functional operators. In a meaningful product of operators,
each internal parameter will occur twice in neighboring positions in
adjacent operators. One can, without changing the significance of the
operator, strike out such duplicated symbols and condense the notation
thus:

(Xa|X) + (X3]X2) » (XofX3) — (Xo|Xa) - (Xo|X1) — (X X)), (3la)
or

(Xl X3) * (Xa]X) - (Xo]X1) = (X4 Xs) - (Xo|X)). (310)
Conversely, one can deseribe the structure of au operator in more detail,

with consequent expansion of the notation:
(X4 X1) — (X4 X3) - (X5|X1) - (X X5) - (Xl Xa) - (XalX0). (32)

The inverse operator to (X2|X,) will be (X4|X;). Thus

X1 = (XIIXZ) * Xz, (33)
(Xl]XZ) : (leXl_) = 1. (34—)

Both sides of an operator equation can be multiplied by the same
operator. This must be done in such a way that the resulting operators
have meaning: the multiplied operators must have neighboring symbols in
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common. Thus one ecan multiply both sides of Eq. (30) from the left by
the operator (X,|X4), to obtain

(Xo|X4) - (X4 Xs) - (XoXs) - (Xa|Xy1) = (Xo|X4) - (X4|X0), (35)
which may be condensed to
(Xl X3) * (Xa|X1) = (Xo| X} - (X4|X1). (36)

Multiplication of Eq. (30) by (XiX,) from the right is not defined,
but multiplication from the right by, for example, (X,|X5) is defined.

This operator formalism can be applied to variables as well as to
parameters. An input scale, which determines a parameter X; asa func-
tion of a variable x;, can be represented by an operator (X.|x;); an output
scale would be represented by an operator (z: Xs).

3-4. Graphical Representation of Operators.—The operator (X X.),
like the function ¢.(X;), is conveniently represented by a plot of X
against X;. This representation is most uniform and most useful when
homogeneous parameters or variables are used. A plot of H; against H;
always lies in a unit square (Fig. 3:6); it can be used in the graphical
construction of curves representing products of the operator (Hy|H;) with
other operators, and in the solution of other types of operator equations,
in a way which will now be explained.

Given the analytic form of the relations symbolized by

Hk = (Hk[H,) N H,‘, (37(1)
H, = (H.,|Hy) - Hy, (37b)

one can determine the form of the relation
H, = (H,|H:) - H; (37¢)

by eliminating the parameter H;. In the same way, one can determine
the graphical representation of the product operator

(HJ|H) = (H.,|Hy) + (Hi|H.) (38)

by graphical elimination of the parameter Hy from plots of (H,|H:) and
(H:JH.)). Figure 3-7 illustrates the required construction. The opera-
tors (H,|H.) and (H,|H:) are represented, in the standard way, by plot-
ting the first parameter vertically against the second horizontally. In the
representation of (Hi|H), H: is thus plotted vertically, but in the repre-
sentation of (H,|H;) it is plotted horizontally. The parameter H, is
plotted horizontally in the first case, and H, vertically in the second; it is
in this way that they are to be plotted in the standard representation of
the product operator (H,[H;), which we must now construct. On the
main diagonal of the square, the line (0, 0) — (1, 1), we select a point 4;
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this will represent, by its equal horizontal and vertical coordinates, a par-
ticular value of the parameter H;. A horizontal line through 4 will
intersect the curve (H.|H;) at a point B; the horizontal coordinate of
Bis a value of H; corresponding to the chosen Hy. A vertical line through
A will intersect the curve (H,!H) at a point C; the vertical coordinate of
C is the value of H, corresponding to the chosen H;. The point D, con-
structed by completing the rectangle ABDC, then has the horizontal
coordinate H; and the vertical coordinate H, corresponding to the same

1 2
(H, 1 H)) (H, | Hy) (Hp| Hy)
(H, 1 HY
]

i /

L
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0 H;— 1

Fia. 3-6.—Graphical representation of a Fia. 3-7—Construction of a product of

typical operator (HxlH). operators.

value of H;; it is a point on the curve of the product operator (H,|H,). It
will be noted that the horizontal line through A intersects the curve
(Hi|H;) at a second point, B, to which corresponds a second value of
H; compatible with the same values of H; and H,. The point D’ deter-
mined by constructing the rectangle A B’D'C is thus a second point on the
curve (H,|H;). By carrying out this construction for a sufficient number
of points A, one can determine enough points D, D', on the curve (H,|H)
to permit its construction with any desired accuracy.

The slopes of the factor and product curves are simply related. The
analytic relation

dH, _dH, dH.

di, = a,  dH. (39)

becomes, in the notation of Fig. 3-7,

[Slope of (H,|H;) at D] = [Slope of (H,|H:) at C]
X [Slope of (H|H:) at Bl. (40)

If the factor curves intersect at a point 4 on the main diagonal, the rectan-
gle ABDC reduces to a single point; the product curve passes through this
same point, with a slope equal to the slopes of the factor curves. An
important special case is that in which both factor functions are con-
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tinuous and monotonically increasing in the range of definition. The
factor curves then intersect at the points (0, 0) and (1, 1), at the ends of
the main diagonal: the terminal slopes of the product curve are equal to
the products of the corresponding terminal slopes of the factor curves.

It is sometimes desirable to construct the product (H,|Hz) - (Hx Hy),
using, instead of a plot of (H, Hy), a plot of its inverse, (Hi|H,). The
required construction is shown in Fig. 3-8. A horizontal line through a
point A, corresponding to an arbitrarily chosen value of H;, will intersect
the curve (Hy|H,) at a point C with horizontal coordinate H,, and the
curve (HiH;) at a point B with horizontal coordinate H;. A vertical
line through C will intersect the main diagonal at a point D with vertical
coordinate H,. Finally, by completing the rectangle CDEB, one can
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F1g. 3:-8.—Construction of the Fre. 3-9.—Graphical solution of
product (H,|Hx) - (Hx|H:), using Z - (Hi|Hy) = (H.|Hy).

plot of (Hi H,).

determine the point E, with vertical and horizontal coordinates H, and
H,, respectively; this point, then, lies on the required curve (H,|H.).
This construction is essentially a solution of the operator equation

(HilH,) - (Ho|H:) = (HiHy), (41)

the first and third of these operators being known. Otherwise stated, it is
a graphical solution of the operator equation

(Hi|H,) - Y = (Hi|H) (42)

for the unknown operator Y, which is obviously the desired (H,|H;). It
will be noted that the construction of Fig. 3-8 is that required for the
multiplication of (H.|H,) and (H,|H:) to produce (Hx H,), according to
the method first explained.

Another operator equation often encountered is

Z - (HJ|Hy) = (H,|Hy). (43)
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The construction for Z is sketched in Fig. 3-9 in the case of monotone
operators (H,|H:) and (H,.|Hz).

3:6. The Square and Square-root Operators.—It is sometimes desir-
able to connect in series two identical linkages with equal input and out-
put travels. The first linkage carries out the transformation

H, = (Hle,) * H,’, (440)
the second linkage, the transformation
H, = (H,|H}) - H;, (44b)

where the operators (H\H;) and (H,|H:) are identical in form, though
not, of course, in the arguments. Then

(H.IH;‘) = (H,[Hk) N (Hk'HI) (45)
v A
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Fia. 3:10.—Squaring an operator. F1Gg. 3-11.—Squaring an operator W

represented by a curve which crosses the
main diagonal.

is essentially the square of the operator
W = (H,|Hy) = (HilH); (46)

Eq. (45) may be written as
(HJH) =W -W = W (47)

The construction for the operator W? is illustrated in Figs. 3:10 and 3-11.
In principle, it is the same as the construction of Fig. 3-7; differences in
appearance arise from the fact that, since the functions are identical, the
points B and C lie on the same curve, instead of on two different ones.

The curve representing W? lies beyond the W-curve, away from the
main diagonal. Where the W-curve crosses the main diagonal, the
W2-curve also crosses it, with a slope equal to the square of the slope of the
W-curve; terminal slopes are related in the same way when the terminal
points are (0, 0) or (1,1). Thus the variations in slope of the W2-curve,
and its curvature, are greater than those of the W-curve.
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The difficulty in designing a linkage to generate a given function tends
to increase with the curvature of the function. It is often impossible to
use a linkage of given type to mechanize a given functional operator
(H,|H;) = W? with large curvature, but quite feasible to mechanize the
less strongly curved square-root operator W. 1If it is possible to solve
Eq. (47) for the operator W, and to mechanize this by a linkage with equal
input and output travels, it is then possible to mechanize the given func-
tion by two such linkages in series. This technique will be discussed in
Chap. 6; we shall here consider only the
graphical method for solving for the =
square-root operator W, when W2increases v £
monotonically.

The general nature of the problem of
solving for W can be understood by in-
spection of Fig. 3:10. One needs to fill
out the region between the main diagonal iy
and the W-curve by a system of rectangles | $
with horizontal and vertical sides, such F’ 7
that one corner of each rectangle lies on the |fF¢
main diagonal, the opposite corner lies on
the W2curve, and the other two corners
fall on a continuous curve, the W-curve.
This can always be done, and in an infinite number of ways; the square-
root operator is not unique, but has the multiplicity of the curves that
can be drawn between two given points.

A square-root operator can be constructed in the following way.
Between the main diagonal and the W2-curve, let a point C be chosen,
quite arbitrarily (Fig. 3-12). Beginning at the point C, construct the
horizontal line o8, the vertical line v, the horizontal line 3, and so on;
these form a step structure with vertexes alternately on the main diagonal
and the W2-curve, extending through the region between these lines. A
second step structure passing through C is formed by the vertical line
#a, the horizontal line o’8’, the vertical line 'y, and so on. These two
step structures define a series of rectangles with opposite vertexes on
the main diagonal and the W2curve. The other vertexes define a
sequence of points, . . . , 4, B, C, D, . . . , such that a W-curve which
passes through any point of the sequence, say C, must pass also through
all the others. This sequence of points will have a point of condensation
where the W2-curve crosses the main diagonal, and cannot be extended
through such a point. In Fig. 3-12 the points of condensation are the
terminal points (0, 0) and (1, 1); in a case like that of Fig. 3-11, inde-
pendent sequences must be defined in regions separated by points of
condensation.

Fic. 3-12.—Construction of a
square-root operator.
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Let us choose to construct a square-root operator, W, which passes
through the sequence of points, . . . , 4, B, C, D, . . . , indicated by
solid circles in Fig. 3-12. We can also require that it pass through any
other similarly constructed series of points, . . . , A", B, C', D', . . .,
such as that indicated in Fig. 3-12 by small circles. We can, in fact, com-
pletely define W by requiring that it pass between points B and C in an
arbitrarily chosen continuous ecurve. Corresponding to the points of this
curve, the above construction will define sequences of points that con-
nect 4 to B, C and D, and so on; these points define a continuous W-curve
extending from one condensation point to the next. The reader will
find it easy to prove that if W is to be single-valued everywhere, it must
increase monotonically between B and C.
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Fig. 3-13.—Construction of a squareroot Fi1G. 3.14.—Square-root—operator curve
operator near a point of condensation. having a derivative at a point of conden-

sation.

The square-root operators thus defined do not, in general, have
derivatives at the limiting points of condensation. In Fig. 3-12 it is
2vident that the W-curve oscillates more and more rapidly as the origin is
approached, and it is hardly to be expected that a derivative will exist at
that point. Figure 3-13 represents the part of Fig. 3-12 very near the
origin, in a neighborhood in which the W2-curve can be replaced by a
straight line with finite slope 8 = 1. The points a, b, ¢, d, e, fall in the
same sequence as the points 4, B, C, D, of Fig. 3-12. No attempt is made
to represent the forms of the intervening curve segments, which are
replaced by straight lines. The step structure shown dashed is the con-
tinuation of the structure a8vde . . . of Fig. 3-12; it will be unchanged if
the point C is shifted horizontally, say to C*. The other step structureis
the continuation of &’8'y'6’ . . . , and it will be changed by a horizontal
shift of C. It is easy to show that the segments ab, cd, ¢f, . . . , are
parallel, as are the segments be, de, fg, . . . . The segments ab and cd
are in general not parallel to each other; the average slopes in successive
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segments of the W-curve remain constant and different as the origin is
approached, and no derivative exists at the origin.

As we have already noted, a shift of the point C of Fig. 3-12 to the left
will modify one of the step structures, defining a new sequence of points
a* b* c* ..., corresponding to the new point C*. By proper choice
of C* the new sequence of points can be brought to lie on a straight line
through the origin, as shown in Fig. 3-14. Only through this particular
sequence of points can one pass a W-curve having a derivative at the
origin; the limiting slope of that curve must be the slope of the line
a*b*c* . . ., wheh is easily shown to be 4/S. This geometric argu-
ment thus leads to the already stated conclusion that the slope of the
W-curve at a point of condensation must (if it exists) be equal to the
square root of the slope of the W2-curve.

The argument of the preceding paragraph also leads to the conclusion
that on any given horizontal line there is one and only one point C* that
lies on a W-curve with derivative at the origin. It is evident, then, that
the condition that the W-curve shall have a derivative at the origin (or
any other point of condensation where the W2-curve intersects the main
diagonal with a finite difference of slope) is sufficient to determine uniquely

_ the form of the W-curve as far as the next adjacent point of condensation.
Since an independently determinable section of the W-curve usually lies
.between two such points of condensation, the condition that it have a
derivative everywhere places on it two conditions, which may or may not
be consistent. Thus for any given monotonic W2-curve there can exist,
at most, one W-curve with a derivative everywhere; there may exist none
at all.

If the W-curve is to be mechanized exactly, it is obviously necessary
that it have a derivative everywhere. For an approximate mechanization
it is only necessary that the W-curve oscillate with sufficiently small
amplitude about a mechanizable curve with a derivative everywhere. In
either case, the analysis just outlined forms a practical basis for the
determination of W-curve. Trying in turn several points C, one can
quickly find a point C* such that the slopes of the segments a*g*, g*y*,

. . approach equality as one of the two limiting points of condensation
is approached. The corresponding slopes may then oscillate near the
other point of condensation, at which this W-curve will have noderivative.
It is, however, usually possible to choose C* so that the oscillations of the
W-curve are negligibly small near both points of condensation. By inter-
polation one can then determine a smooth approximate W-curve suitable
for mechanization.




CHAPTER 4
HARMONIC TRANSFORMER LINKAGES

We turn now to the problem of designing a bar linkage for the mecha-
nization of a given functional relation between two variables. The devices
used will be discussed in the order of their increasing flexibility and the
increasing complexity of the design procedure required: in Chap. 4,
harmonic transformers and double harmonic transformers; in Chap. §,
three-bar linkages; in Chap. 6, three-bar linkages in combination with
harmonic transformers or other three-bar linkages. Full examples of the
design techniques will be provided by detailed discussions of the problem
of mechanizing the tangent and logarithmic functions.

THE HARMONIC TRANSFORMER

4-1. Definition and Geometry of the Harmonic Transformer.—An
ideal harmonic transformer is a mechanical cell for which input and output
parameters X; and X are related by

Xy = Rsin X, (1)

R being an arbitrary constant. Such a relationship can be obtained with
simple mechanisms modeling a right triangle, such as are sketched in Fig.

+
t
-—Xk

Fia. 4-1.—Ideal harmonic transformers.

4-1. These harmonic transformers are called “ideal” because they

generate the sine or arc-sine functions accurately ; unfortunately, they are

somewhat unsatisfactory mechanically, and are therefore used only

exceptionally in practical work. It is usually preferable to employ

nonideal harmonic transformers, such as those shown in Figs. 4-2 and 4-3,
58
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which give only an approximately sinusoidal relation between input and
output parameters.

The mechanism shown in Fig. 4-2is an ordinary crank-link system with
unsymmetrically placed slide. The deviation of the output parameter
from its “ideal” value depends upon the angle ¢ between the link L and
the line of the slide. Representing the output parameter by X}, one has

X!, = Rsin X; — L(1 — cos ¢). 2)

This may be written as

X, = X + 8X,, 3)

’

X

Kimp—<—"Xan

Fia. 4:2.—Crank-link system as a nonideal harmonic transformer.

where 6X; is the structural error of the mechanism as compared with the
ideal harmonic transformer:

86X, = —L(1 — cos ¢). 4)
In the mechanism of Fig. 4-2, € is variable, being given by
Lsine =Rcos X; — W. (5)

In Fig. 4-2 the slide displacement W has been so chosen as to keep e,
and hence 86X, small as the crank turns through its limited operating
angle. As will be discussed in detail later, it may be desirable to make a
different choice of W in order to obtain a desired nonvanishing form for

X,
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Figure 4-3 represents a harmonic transformer connected to another
linkage such that the pivot P may be found anywhere within the shaded
area. Equations (2), (3), and (4) hold in this case, but ¢ and the strue-
tural-error function 3X; now depend not only on X;, but also on the
position of the pivot P within the possible boundary.

An ideal harmonic transformer generates a section of sine or arc-sine
curve, the form of which can be fixed by specification of the angular limits
of the rotation of the crank, X;, and X;». The nonideal harmonic trans-
former requires four parameters for its specification—{for instance, Xn,
X.u, L/R, and W/R. The presence of these additional parameters per-

£A)
{[(I/II/I/,A z

[ ™

F1G. 4-3.—A nonideal transformer without fixed slide.

mits a considerable extension of the field of mechanizable functions—an
extension which becomes striking if e is permitted to assume large values.
In most practical work ¢ and 8X; are kept fairly small; 6X, then appears
either as an error arising from the use of a nonideal design, or as a small
correction to the sinusoidal form, by which one makes the mechanized
function correspond more closely to a given, not exactly sinusoidal,
function. ]

In working out the mathematical design of a system that includes a
nonideal harmonic transformer, it is usually desirable to carry through the
first calculation as though the transformer were ideal. The error arising
from use of the nonideal design can then be corrected in the final stages
of the work (if this is required by very rigid tolerances), or so chosen as to
minimize the over-all error of the system.




Skc. 4-2] USE OF THE HARMONIC TRANSFORMER 61

4.2, Mechanization of a Function by a Harmonic Transformer.—
In the harmonic transformer one parameter is a rotation, the other a
translation. Either of these may be taken as the input parameter. If
the crank R is the input terminal, the limits of the input parameter X; may
be chosen at will; the crank can describe any angle or make any number
of revolutions. The mechanized function will always be a sinusoid or a
part of a sinusoid between chosen limits
(Fig. 4-4). If the slide is the input ter-
minal, the range of the input parameter
X, must be limited to keep the mecha-

X, Maximum
AX, slope

Xow, R
) X,
AX ) AX; il X,
-xbl! J X; _L- im
Kim X Xn
iM

p—y .th
AX;
Fia. 4-4—Sinusoid generated by an ideal Fia. 4-5.—Arcsinusoid generated by an
harmonic transformer. ideal harmonic transformer.

nism far enough from the self-locking positions. The mechanized
function is then a portion of an arcsinusoid (Fig. 4-5) within which the
slope does not exceed some maximum value determined by mechanical
considerations.

The simplest problem in ideal-harmonic-transformer design is that of
mechanizing a harmonic relation, analytically expressed, between varia-
bles z; and z;:

Ty — Tk, = T 8in (z; — zi,), r >0, (6a)
or

T — i, = sin? <x"+x""); (6b)

given specified limits for the input variables. To determine the constant

R of the harmonic transformer and the required relation of the variables

i, Zx, to the parameters X;, X, one need only compare Eqgs. (1) and (6):
Tk — Ty __ X;
- = 75?

r R

The value of R, chosen at will, determines the scale factor K; of the param-
eter X,:

T — Xy = X,‘. (7)

Ty — Xk Ty — Xr,
Kk 0 __ Yk ko _

= = r
CXe— Xa, X k ®)
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[Xr = 0, by Eq. (7)]. The scale factor for X;is unity. These constants
being fixed, the harmonic transformer is determined. The range of
parameter values for which it must operate is determined by the limited
range of the input and output variables, Tim £ i £ Zinr, Tam < Tk = T

Xim = Tim — Tiy Xine = Tim — Tiyy 9

Xpm = kaTkzk“: Xiw = :EEMTI‘% (10)

A less trivial problem is that of mechanizing a function that has a
generally sinusoidal character, but is given only in tabulated form. One
possible method in such a case is to fit the given function as well as possi-
ble (for example, using the method of least squares) by the analytic
expressions of Eq. (6), and then to proceed as just explained. A quicker
way, making use of homogeneous variables and parameters, will now be
presented.

4.3. The Ideal Harmonic Transformer in Homogeneous Parameters.
Before expressing the equation of an ideal harmonic transformer in homo-
geneous parameters, we must define the parameters more precisely.

The position of the crank R (Fig. 4-2) is described by the parameter
X, the rotation of the crank clockwise from a zero position perpendicular
to the center line C of the slide. The other parameter, X, is defined as
the normal projection of the arm R onto the center line of the slide. The
crank R in the zero position is pictured as directed upwards, and X, is
taken as positive toward the right from the point S.

The homogeneous parameters 6;, H:, are related to the parameters
Xi, Xk, by
— -Xn' - Xim’ Hk — Xk - ka_

b AX; AX, (1)

(The symbol 6; is chosen to represent one homogeneous parameter,
instead of H,, to emphasize the fact that in this case one is concerned
with a rotation.) From these definitions it follows that both homo-
geneous parameters increase in the same sense as the original parameters:
6; increases always clockwise, H; increases to the right.

The connection between ordinary and homogeneous parameters in a
harmonic transformer is illustrated in Fig. 4-6. The arc of the angle of
travel AX,, scaled evenly clockwise from O to 1, permits direct reading of
6;. The projection of that arc on a straight line perpendicular to the
gero line SO, scaled evenly from 0 to 1, from left to right, permits direct
reading of H;. Any line parallel to OS passes through corresponding
values of 6; and Hi. The correlation of values of H; to those of 6 is
unique so long as AX; < 360°; the converse correlation may be double-
valued in some cases, as is illustrated by Figs. 4-6(b) and 4-6(c).
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From the definition of homogeneous parameters and from Eq. (11) it
is evident that, always,

sin (X.[m + 0.-AX,-) - (sin Xi)min

He = = X = i X

(12)

(a}
Fia. 4-6.—Ideal harmonic transformer with homogeneous parameters.
(@) (8in X;)max = sin Xyu. ®) (sin Xi)max = 1. (¢) (sin X)min = sin Xyp.

Special forms of this relation, applicable in cases of the types illustrated
in Figs. 4-6(a), 4-6(b), 4-6(c), respectively, are as follows:

sin (Xim + 6:AX;) — sin X

H, = sin Xiy — sin X;p, (13a)
_ sin (X.'m + B.AX,) — sin X,‘m

H = 1 — sin Xin (135)
_ sin (Xim + 60,AX;) — sin Xia

Hi = T — sin Xox ' (130)

4-4. Tables of Harmonic-transformer Functions.—The use of har-
monic transformers as parts of complex linkages is so extensive and the
design problem is so greatly simplified by the use of homogeneous param-
eters that it is very convenient to have available a fairly complete table
of the functions appearing in Eq. (13). Table A-1 gives Hy for 6, = 0.0,
0.1, 02, - - - 09, 1.0, and for AX; = 40° 50° - - - 140°. Smaller
values of AX; are of little interest, since with small angular travel the
errors due to mechanical play become relatively important, and other
devices can serve as well for mechanization of the corresponding nearly
linear functions H:(6;). Two facing pages are required for each value of
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AX;. Columns of values of H; are grouped in pairs in a way intended
to facilitate the calculation of structural error functions, as discussed in
Sec. 4-5. The first of these columns has the corresponding values of
X and X, indicated at the top, and is tabulated with 6; (indicated to the
left) increasing downward. The second column has the values of X and
X indicated at the bottom, and is tabulated with 6; (indicated at the
right) increasing upward. The associated columns correspond to har-
monic transformers with X;, < X; £ X.» and with

(90° — Xiw) £ Xi £ (90° ~ Xom),

respectively; the significance of this and of other features of the table
which are not of importance at this point will be explained in Sec. 4-5.

Table A-2 gives 6; for H; = 0.0, 0.1, 0.2, - - - 0.9, 1.0, and for the
same AX; as Table A-1. The arrangement is simple and should require
no explanation here. Only single-valued relationships between H; and
6; are tabulated, since the table is intended for use wh